Annotated MM-ML programs
To apply the MM-ML procedures, several estimation programs have to be defined and
uploaded to STATA. The general estimation command for the full model (equation 8) with 7

free parameters is:

program define ML choice time conf

version 1.0

args 1Inf p muOT sigmaT distT muOC sigmaC distC

quietly replace "1lnf'=ln(binomial (total pred, $ML yl, 'p')-
binomial (total pred, $ML_y1—1,‘p')) if index==1 & miss == 0
quietly replace "1lnf'=ln(binomial(total pred, $ML yl, 0.5)-
binomial (total pred, $ML_y1—1, 0.5)) 1f index==1 & miss ==
quietly replace "1Inf'=ln(normalden(SML yl, "muOT'+abs(distT')*

total pred, “sigmaT')) if index==2

quietly replace "1lnf'=ln(normalden($ML yl, "muOC'+abs(distC')*
total pred, “sigmaC')) if index==3

end

The variable index codes whether it is a choice (1), decision time (2), or confidence (3)
data point; the variable fotal_pred codes the total number of observations per category (for
choice data points), and the contrast weight (for decision time and confidence) (see Table 1);
the variable miss is used for choice data points only and codes if random choices (i.e., missing
values) are predicted for the respective type of items (1) or not (0) (as it is often the case for

an EQW strategy, see Table 1).

After installing the program (e.g., by copying it into the command window and

pressing Enter), the program ML _choice time conf can be used as part of any ML estimation

as follows:

ml model 1f ML choice time conf (epsilon: dv=) (mu Time:)
(sigma Time:) (R Time:) (mu Conf:) (sigma Conf:) (R Conf:) if
Participant == 1 & strat ==1

ml init 0.5 500 100 100 10 5 5, copy
ml maximize

‘ml model” defines the model which contains the parameters listed in parentheses; dv

defines the variable containing data for choices, confidence and time. The ‘if’ sub-command

Multiple-Measure Strategy Classification 2

defines for which person and strategy the command should be executed. ‘ml init” defines
initial values for the parameters in the order listed in the model command, and helps for
quicker convergence. ‘ml maximize’ starts the ML routine. Note that convergence can only
be found if the observed error rate fulfills 0 <& < 1. For persons with a perfect strategy use
one artificial error has to be added to the data before the analysis is conducted.

An example data file and the complete syntax files (i.e., do-files) for uploading the
estimation programs and carrying out a comprehensive analysis can be downloaded as

supplementary material to this article. The commented code is also listed here:

*xxxxx*x*x ML Estimation programs: Definitions

*** Just copy into execution window of STATA and press enter**x*x**x*
** After their installation these programs can be used as separate
estimations commands *

* The code includes

* a) the total model (estimating strategies with predictions for
choices, time and confidence)

* b) the flat time prediction model (for strategies that predict no
differences in decision times between items)

* ¢) the flat confidence prediction model (for strategies that
predict no differences in confidence between items)

* d) the flat confidence and time prediction model (for strategies
that predict no differences in decision times and confidence between
items)

* e) the random choice model (predicting random choices and no
difference between time and confidence for items).

* Additionally three models are provided that estimate choices, time
and confidence separately. The first model implements the choice
based strategy classification method by Brdder & Schiffer (2003).

*** total model.

program define ML choice time conf

version 1.0

args 1lnf p muOT sigmaT distT mu0OC sigmaC distC

quietly replace "1nf'=ln(binomial(total pred, SML yl, 'p')-
binomial (total pred, $ML_y1—1,\p')) if index==1 & miss ==
quietly replace "lnf'=ln(binomial (total pred, $ML yl, 0.5)-
binomial (total pred, $ML_y1—1, 0.5)) 1f index==1 & miss ==

quietly replace "Inf'=ln(normalden(SML yl, "muOT'+abs(distT')*
total pred, “sigmaT')) if index==

quietly replace "1Inf'=ln(normalden(SML yl, "muOC'+abs(distC')*
total pred, “sigmaC')) if index==
end

Multiple-Measure Strategy Classification

* Explanation: ‘args’ defines the parameters; the 4 ‘replace’
commands generate the log-likelihood function. The first two
‘replace’ commands use the binomial distribution to generate the
function for choices (the second of it implements random choices
with error = 0.5), the third ‘replace’ command uses the normal-
density function to general the likelihood function for time, the
last command does the same for confidence. The ‘abs’ command

3

produces the absolute value of the rescaling parameter and therefore

prevents negative predictions. The following programs are derived
from the total model by deleting parts of it.

** Flat time prediction

program define ML choice time conf flat time

version 1.0

args 1Inf p muOT sigmaT muOC sigmaC distC

quietly replace "1lnf'=ln(binomial(total pred, $ML yl, 'p')-
binomial (total pred, $ML_y1—1,‘p')) if index==1 & miss ==
quietly replace "1nf'=ln(binomial(total pred, $SML yl, 0.5)-
binomial (total pred, $ML_y1—1, 0.5)) 1f index==1 & miss ==

quietly replace "1nf'=ln(normalden($ML yl, "muOT', “sigmaT')) if
index==

quietly replace "Inf'=ln(normalden(SML yl, "muOC'+abs(distC')*
total pred, “sigmaC')) if index==3
end

** Flat Confidence Prediction

program define ML choice time conf flat conf

version 1.0

args 1lnf p muOT sigmaT distT mu0OC sigmaC

quietly replace "1lnf'=ln(binomial(total pred, $ML yl, 'p')-

binomial (total pred, $ML yl-1, 'p')) if index==1 & miss ==
quietly replace "1nf'=ln(binomial(total pred, $ML yl, 0.5)-
binomial (total pred, $ML yl-1, 0.5)) if index==1 & miss == 1

quietly replace "Inf'=ln(normalden(SML yl, "muOT'+abs(distT')*

total pred, “sigmaT')) if index==2

quietly replace "1lnf'=ln(normalden(SML yl, "muOC', “sigmaC')) if
index==

end

** Flat time and confidence prediction

program define ML choice time conf flat both

version 1.0

args 1lnf p muOT sigmaT muOC sigmaC

quietly replace "1nf'=ln(binomial(total pred, $SML yl, 'p')-
binomial (total pred, $ML yl-1, 'p')) if index==1 & miss ==
quietly replace "1lnf'=ln(binomial (total pred, SML yl, 0.5)-
binomial (total pred, $ML yl-1, 0.5)) if index==1 & miss == 1

Multiple-Measure Strategy Classification 4

quietly replace "1lnf'=ln(normalden(SML yl, "muOT', “sigmaT')) if
index==2

quietly replace "1nf'=ln(normalden(SML yl, "muOC', ‘“sigmaC')) if
index==
end

** Random Choice Model
program define ML choice time conf random
version 1.0

args 1nf muOT sigmaT muOC sigmaC

quietly replace "1lnf'=ln(binomial(total pred, $ML yl, 0.5)-
binomial (total pred, $ML yl-1, 0.5)) if index==

quietly replace "1lnf'=ln(normalden(SML yl, "muOT', “sigmaT')) if
index==

quietly replace "lnf'=ln(normalden(SML yl, "muOC', ‘sigmaC')) if
index==

end

*xk*x**x* Single estimations
**choices only

program define ML choice
version 1.0

args 1lnf p
quietly replace "1lnf'=ln(binomial(total pred, $ML yl, 'p')-
binomial (total pred, $ML yl-1, 'p')) if index==1 & miss ==

quietly replace "1nf'=ln(binomial(total pred, $ML yl, 0.5)-
binomial (total pred, $ML yl-1, 0.5)) if index==1 & miss ==
end

**time only
program define ML time
version 1.0

args 1Inf muOT sigmaT distT

quietly replace "lnf'=ln(normalden(SML yl, "muOT'+ distT'*
total pred, “sigmaT')) if index==

end

**confidence only

program define ML conf
version 1.0
args lInf muOC sigmaC distC

Multiple-Measure Strategy Classification 5

quietly replace "Inf'=ln(normalden(SML yl, "muOC'+ distC'*
total pred, “sigmaC')) if index==3
end

*xxkxxkx*End Definition

*** Total estimation program for all Participants and all strategies
producing a participant x strategy matrix with BIC scores

* The example uses 10 participants and 5 strategies but can be
easily extended to any number of strategies and participants.

matrix strat vec = [0,1,1,0,4]

*** determines which model is used per strategy: 0-full model, 1-
flat decision time prediction, 2-flat confidence prediction, 3-flat
both, 4-random choice model

* each value for a strategy is separated by ',’

matrix N obs cat = [18,18,18,18,18]
*** replace by number or observations representing independent
categories for each strategy considered

matrix result = J(10,5,0)
** defines the output matrix and sets all initial values to 0. The
first parameter represents the number of participants, the second
the number of strategies.

***** The following loops define the search for persons (u) and
strategies (v). Replace the numbers after '/’ by total number of
participants (u) and strategies (v). The subject ID in the data
(variable: Participant) has to be coded starting from 1 to the
number of persons.

forvalues u= 1/10 {

forvalues v = 1/5 {

dlSp M AR A A AR A AKX KX/

disp “W**** Subject: “"u' “ **** Strategy: “Vv!
if strat vec[l, 'v'] ==0 {
ml model 1f ML choice time conf (epsilon: dv=) (mu Time:)
(sigma Time:) (R Time:) (mu Conf:) (sigma Conf:)
(R_Conf:) if Participant =="u'& strat == "v'

** defines the model and the variable used. ‘dv=’ defines
that all observations for choices, confidence and time
are coded in the same variable dv.

ml init 0.5 0 2500 1000 37 45 30, copy

Multiple-Measure Strategy Classification 6

** gives initial values for the 7 parameters (error rate,
mean time, sd time, R time, mean confidence, sd
confidence, R confidence; see also model above).
Convergence is quicker with better intial values.

ml maximize

** starts the ML estimation and generates the individual
output for subject u strategy v.

matrix coef = e (b)

if coef[1l,1] < .50 {

scalar BIC = -2* e(ll)+1ln(N _obs cat[l1, v'])*7
matrix result[u', "v'] = BIC
disp “Subj: ” “u' N Strat: ” ‘v' Y - BIC:” BIC

}

** coef[l,1l]contains the error rate epsilon which can be
uses as a limit for classification, I use .50 as limit
here.

** The BIC score is calculated correcting for 7
parameters for the full model.

if coef[1,1] >= .50 {
disp “BIC: not calculated because error bigger than .50”
disp “Subj: 7 “u' ™ Strat: 7 “v' ™ - BIC: not
calculated because epsilon bigger or equal than .50”
}

}

if strat vec[l, 'v'] ==1 {

ml model 1f ML choice time conf flat time (epsilon: dv=)
(mu Time:) (sigma Time:) (mu Conf:) (sigma Conf:)

(R Conf:) if Participant =="u'& strat == "v'

ml init 0.5 0 2500 37 45 30, copy

ml maximize

matrix coef = e (b)

if coef[1l,1] < .50 {

scalar BIC = -2* e(1l1l)+1ln(N obs cat[l, "v'])*6
matrix result['u', "v'] = BIC
disp “Subj: ” ‘u' N Strat: ” ‘v' Y - BIC:” BIC

}

** The BIC score is calculated correcting for 6
parameters for the flat time prediction model.

if coef[1,1] >= .50 {
disp “BIC: not calculated because error bigger than .50”
disp “Subj: 7 ‘u' Strat: 7 “v' - BIC: not
calculated because epsilon bigger or equal than .50”
}

}

if strat vecll, v'] ==2 {

Multiple-Measure Strategy Classification 7

ml model 1f ML choice time conf flat conf (epsilon: dv=)
(mu Time:) (sigma Time:) (R Time:) (mu_ Conf:)

(sigma Conf:) if Participant =="u'é& strat == "v'

ml init 0.5 0 2500 1000 37 45, copy

ml maximize

matrix coef = e (b)

if coef[1l,1] < .50 {

scalar BIC = -2* e(1l1l)+1n(N obs cat[l, "v'])*6
matrix result[' u', "v'] = BIC
disp “Subj: ” ‘u' N Strat: ” ‘v' Y - BIC:” BIC

}

** The BIC score is calculated correcting for 6
parameters for the flat confidence prediction model.

if coef[1,1] >= .50 {
disp “BIC: not calculated because error bigger than .50”
disp “Subj: 7 “u' Strat: 7 “v' ™ - BIC: not
calculated because epsilon bigger or equal than .50”
}

}

if strat vec[l, 'v'] ==3 {

ml model 1f ML choice time conf flat both (epsilon: dv=)
(mu Time:) (sigma Time:) (mu Conf:) (sigma Conf:) if
Participant =="u'& strat == "v'

ml init 0.5 0 2500 37 45 , copy

ml maximize

matrix coef = e (b)

if coef[1l,1] < .50 {

scalar BIC = -2* e(1l1l)+1ln(N obs cat[l, "v'])*5
matrix result['u', "v'] = BIC
disp “Subj: ” ‘u' N Strat: ” ‘v' Y - BIC:” BIC

}

** The BIC score is calculated correcting for 5
parameters for the flat time and confidence prediction
model.

if coef[1,1] >= .50 {
disp “BIC: not calculated because error bigger than .50”
disp “Subj: 7 ‘u' Strat: 7 “v' - BIC: not
calculated because epsilon bigger or equal than .50”
}

}

if strat vec[l, 'v'] ==4 {

ml model 1f ML choice time conf random (mu Time: dv=)
(sigma Time:) (mu Conf:) (sigma Conf:) if Participant
=="u'& strat ==

ml init 0 2500 37 45, copy

ml maximize

matrix coef = e (b)

scalar BIC = -2* e(ll)+1ln(N obs cat[l, "v'])*4

matrix result[u', "v'] = BIC

Multiple-Measure Strategy Classification 8

** The BIC score is calculated correcting for 4
parameters for the random choice model.
**% No limit for maximum error in choices is used for

random choice strategies.

disp “Subj: ” "u' “ Strat: ” “v' " - BIC:” BIC

matrix list result

** the last command prints the output matrix for all subjects and
all strategies

