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When and why people perform mindless math
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Abstract

In this paper, we show that the presence of numbers in a problem tempts people

to perform mathematical operations even when the correct answer requires no math,

which we term “mindless math”. In three pre-registered studies across two survey

platforms (total N = 3,193), we investigate how mindless math relates to perceived

problem difficulty, problem representation, and accuracy. In Study 1, we show that

increasing the numeric demands of problems leads to more mindless math (and fewer

correct answers). Study 2 shows that this effect is not caused by people being wary of

problems that seem too easy. In Study 3, we show that this effect is robust over a wider

range of numeric demands, and in the discussion we offer two possible mechanisms

that would explain this effect, and the caveat that at even harder levels of numeric

demands the effect may invert such that much harder math increases accuracy relative

to moderately hard math.

Keywords: mindless math, problem solving, dual-process theory, intuitive errors

1 Introduction

If asked How many cubic feet of air are in an empty box that is 3’ deep x 3’ wide x 3’ long?1

most (70%, N = 99) respondents correctly compute 27.2 However, when asked the variant,
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1These problems are modified from a CRT-2 item (Thomson & Oppenheimer, 2016). The original wording

is, “How many cubic feet of dirt are in an empty hole that is 3’ deep x 3’ wide x 3’ long?” (N = 101, 42%

respond 27, and 34% respond 0). For further details of these supplementary studies, refer to the supplement.

2An additional 12% of participants responded with 0, which could be due to familiarity with the original

Thomson & Oppenheimer version (2016), or construing “empty” as also meaning empty of air.
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How many cubic feet of dirt are in an empty box that is 3’ deep x 3’ wide x 3’ long?, most

(54%, N = 102) still answer 27, compared to just 26% who recognize that an empty box

contains 0 cubic feet of dirt. The presence of a possible calculation leads respondents to

perform it, even though it is unnecessary. Though it is not hard, it is hard enough to be

rewarding. We call this process “mindless math”.

In the present research, we find that mindless math is, somewhat ironically, more

prevalent in problems involving slightly harder numeric operations. We believe that salient,

simple but non-trivial math tempts people to perform it, and correspondingly distracts their

attention from properly representing the problem, as is required for solution.

1.1 Problem representation and problem solving

To solve a problem, one must first represent it: to internally construct a problem space,

with the problem’s elements, its goal, and the permissible operations one can use to meet

that goal (Greeno & Simon, 1988; Newell & Simon, 1972; Reimann & Chi, 1989, Johnson-

Laird, 1983; McNamara, 1994). For example, in the empty box problem at the start of the

paper “empty” is an important element of the problem to encode. If, however, a problem

solver quickly represents the problem as a computation of spatial volume, they would focus

on depth, width, and length as the key elements, and unnecessarily multiply them to reach

an incorrect answer.

One of the barriers to solving the empty box problem is that one can easily produce

an incorrect answer and never receive corrective feedback. It stands in contrast to many

classic problems in creativity research (Wiley & Jarosz, 2012), such as the nine-dot (Chein,

Weisberg, Streeter & Kwok, 2010) and matchstick problems (Ash & Wiley, 2006). For

these problems it is often clear that a solution has not been reached; the respondent feels

“stumped”; and is made to realize that their current representation is inaccurate. In contrast,

many problems in everyday life are opaque: they map onto familiar structures and operations

that allow a decision maker to reach a fast, seemingly satisfactory answer. They offer no

obvious feedback that you have in fact failed. The ease of adopting familiar structures

and operations reduces the tendency for problem solvers to scrutinize the accuracy of their

approach, and so people don’t spend sufficient time representing these problems to reach

correct answers.

The problems we will use to demonstrate mindless math have similar properties to the

bat and ball problem — the first item of the Cognitive Reflection Test (Frederick, 2005)

— A bat and a ball cost $110 in total. The bat costs $100 more than the ball. How

much does the ball cost? In this problem, there is no corrective feedback, and the presence

of the erroneous intuition ($10) prevents the correct conclusion from being drawn even

when checks are attempted (Meyer & Frederick, 2022). This is partly because even when

checking this item, the problem solver can actively endorse $10 as a response (Meyer &

Frederick, 2022) by explicitly affirming that the ball costs $10 and the bat costs $100, for

a total of $110. In our problems, the presence of a possible calculation serves the role of
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the $10 intuition: it can direct the checking of the answer to verify the calculation was

completed successfully, thus leading the supervisory system to actively endorse that the

correct answer has been reached. This is different from “stumpers” problems (Bar-Hillel et

al., 2018, 2019), where there is an erroneous, intuitive interpretation of the problem stem

— people form a mental model based on incomplete information that makes the problem

appear unsolvable — but this model is recognized as inappropriate.

1.2 Why do people do mindless math?

There is a long history of research showing that familiarity can impede insight. For example,

when someone typically uses an object in a specific way, they can become unable to conceive

of alternative uses. This is called functional fixedness (Duncker, 1945; Adamson, 1952).

A related phenomenon is the Einstellung effect, where people develop predispositions to

solving problems in a particular manner even when better alternatives are available. As an

example, Sheridan and Reingold (2013) used eye tracking data to show that the presence of

a familiar solution to a chessboard situation blocks the discovery of better solutions, even

among expert chess players.

Given that most people have significant experience with simple math problems, calcu-

lation strategies are likely to be a familiar approach, and thus may impede considering other

approaches. This will especially be the case if the content of a problem evokes a calculation

strategy. Though our problems don’t require math, they take the form of problems that do.

Problems that contain numbers evoke a script to perform mathematical operations (Bassok,

1996). This is generally an adaptive response. It aids people in solving everyday math

problems, such as the cost of different combinations at a restaurant. But, in cases where the

tempting and intuitively cued math is not the correct approach, this schematic response to

numeric information will impede reasoners’ ability to correctly answer the problem (Cooper

& Sweller, 1987; Luchins & Luchins, 1950).

Though it is reasonable to construe problems mentioning numbers as math problems,

it is less clear how varying the difficulty of the tempting but unnecessary calculations will

affect people’s propensity to perform the irrelevant math.

1.3 How does problem difficulty affect the rate of mindless math?

We have argued that the presence of numerical information can lead people to misrepresent a

problem, leading them to return mathematical answers to fundamentally non-mathematical

problems (mindless math). In the present research, we consider how these effects vary as

the tempting but unnecessary math in a problem becomes harder.

Consider the following question: Joey went to the store and bought a pack of chips. A

bottle of water costs $3.00, a pack of chips costs $1.00 and a pack of gum costs $2.00. How

much did he spend in total? There are two primary answers that people reach when faced

with this problem: the price of the pack of chips ($1), which is correct, and the sum of the
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three items ($6). Performing the sum to reach $6 is incorrect, but in a specific way. It is not

random noise. People who reach this answer have misrepresented the problem as requiring

a sum, and perform mindless math to reach their answer. In this example where performing

the tempting math was relatively straightforward, 74% of participants responded correctly

with $1, and 24% with the mindless math answer of $6 (N = 196).

In contrast, consider the same problem with harder numbers: Joey went to the store and

bought a pack of chips. A bottle of water costs $1.05, a pack of chips costs $0.75 and a

pack of gum costs $1.70. How much did he spend in total? The numbers here are harder

to add because it involves carrying digits to reach a final sum. The greater difficulty of this

addition may steer people away from spending the time needed to correctly represent the

problem. This will lead people into performing math when, in fact, none is required; Joey

bought only a bag of chips and the correct answer is $0.75. In response to this question, 61%

of participants gave the correct answer of $0.75 and 35% of participants gave the mindless

math answer of $3.50, the sum of the three items (N = 200). Importantly, the difficulty of

the actual problem (i.e., respond with a single number) is unchanged; and when people are

incorrect, they are not simply being lazy: Performing the mindless math of adding the three

numbers to reach $3.50 involves cognitive effort.

The effect of math difficulty is interesting because people give more math-based answers

when the math is harder to compute. Though $3.50 is harder to compute than $6.00, it is

a more common response. This is in contrast to literature on fluency which suggests that

i) answers will be judged as truer if they are reached fluently (e.g., Alter & Oppenheimer,

2009), and ii) that disfluency may lead to deeper processing and greater accuracy. For

example, Keysar et al. (2012) find that decision biases are reduced when people operate in a

foreign language because they have to think more carefully.3 Both of these findings suggest

that the harder numbers — which are more disfluent — should activate analytical thinking

and increase accuracy, rather than leading to more mindless math.

Is this effect limited to math? Let’s consider a verbal formulation of the ‘chips problem’:

Joey went to the store and bought a pack of chips. A pack of chips has a C on the front,

a box of altoids has an A on the front, and a twix has a T on the front. At home, he looks

down. What does he see? Participants fluently form the word “cat”, and this is reflected

in their responses. 41% answered correctly with “c”, but 34% of participants answered

incorrectly with “cat” (N = 203).4 When we make the tempting assembly of letters less

fluent (by yielding a non-word) — Joey went to the store and bought a pack of chips. A

3Alter et al. (2007) report that people perform better in the Cognitive Reflection Test (Frederick, 2005)

when it is presented in disfluent fonts, but strong evidence disputes such an effect (Meyer et al., 2015).

4These responses were collected using an open-ended text entry box. (See Table S5 for full results; and

Table S3 for the results of an earlier iteration that supported the same conclusion.) Other popular responses

included “chips” (4.9%), “floor” (2.9%), or “the floor” (2.7%). If we also count these responses as accurate

then accuracy was 53.2% in the “cat” condition and 57.8% in the “cta” condition (the gap was slightly

attenuated).

There were also other types of wrong answer (e.g., people responding “cat” in the “cta” condition, which

is unambiguously wrong as only the chips with the “C” were purchased).
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pack of chips has a C on the front, a twix has a T on the front, and a box of altoids has an A

on the front. At home, he looks down. What does he see? — people provide more correct

answers (49%) and fewer mindless, “cta” answers (3%, N = 204). In this setting people

perform better when the letter combination (cta) is less fluent than when it is more fluent

(cat). This is consistent with past fluency work (e.g., Alter & Oppenheimer, 2009). In

contrast, when answering our problems that contain math, harder calculations lead people

to undertake the unnecessary math more. This shows that something specific about the act

of doing the math calculations affects people’s accuracy, rather than just the answer being

disfluent in general.

Across three main pre-registered studies (total N = 3,193) and eight supplementary stud-

ies (N = 4,485), we investigated the relationship between numeric demands and individuals’

ability to represent and solve problems correctly. Study 1 showed that participants facing

higher numeric demands were more likely to respond with mindless math answers and less

likely to answer the problems correctly. Study 2 replicated the results of Study 1 using

a modified paradigm to test the difficulty effect’s robustness, and collected self-reports

of participants’ decision processes to help elucidate the mechanism. Study 3 tested the

effect’s robustness across a wider range of numeric demands, and compared the effect of

numeric demands on accuracy between the problems discussed so far where the calculation

is conflicting with the right approach, and problems where math is the right approach.

2 Study 1

In Study 1, we manipulated the numeric demands of problems that contained tempting

math that was unnecessary to reach the correct answer, and measured the rate of correct

responses and the rate of incorrect responses that resulted from completing the tempting

math (mindless math answers). In doing so, we hoped to investigate how changing the

difficulty of tempting, but unnecessary math affects people’s reasoning processes.

2.1 Methods

Participants. We initially recruited 1,920 participants from the survey platform Pro-

lific Academic. 126 participants were excluded prior to random assignment for failing a

comprehension check, leaving us with a final sample of 1,794 participants (Mage = 34.9y,

48.5% women, 2.1% non-binary), who completed the study for $0.18. Our sample size and

analyses were pre-registered (https://osf.io/wuanj/.)

Procedure. Participants answered one of three possible questions (chips, pens, paper)

with one of two levels of numeric demands (easier, harder) in a 3 x 2 full-factorial between-

subjects design. The problems are listed in full in Table 1. Each problem contained

tempting but unnecessary math that could lead to forming erroneous numeric problem
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representations. The chips problem tempted participants to do addition, the pens tempted

subtraction, and the paper tempted division. After answering their problem, participants

provided demographic information (age, gender, education, race).

Table 1: Proportion of different types of responses to each problem.0

Proportion of responses. . .

Problem N Correct Mindless Neither

Joey went to the store and bought a pack of chips. A

bottle of water costs $3.00, a pack of chips costs

$1.00 and a pack of gum costs $2.00. How much did

he spend in total? (in dollars)

300 0.73 0.23 0.04

Joey went to the store and bought a pack of chips. A

bottle of water costs $1.05, a pack of chips costs

$0.75 and a pack of gum costs $1.70. How much did

he spend in total? (in dollars)

298 0.58 0.37 0.05

Billy has 4 pens. He gives me 2 pencils. How many

pens does he have left?

301 0.90 0.10 0.00

Billy has 28 pens. He gives me 9 pencils. How

many pens does he have left?

300 0.72 0.27 0.01

A man is packing away 10 rolls of toilet paper into

crates. A box contains 5 rolls. A crate contains 2

boxes. How many boxes does he need?1

301 0.92 0.07 0.01

A man is packing away 288 rolls of toilet paper into

crates. A box contains 12 rolls. A crate contains 6

boxes. How many boxes does he need?

294 0.72 0.24 0.04

0 The exact wording of the chips problem varies slightly across studies. The minor

changes did not affect our conclusions in any instance.
1 The third item differs from the first two in that the correct answer requires some math

(10 / 5 = 2; 288 / 12 = 24), but does not require the additional step that people perform,

erroneously responding with the number of crates needed.

For each question, numeric responses were coded for two dependent variables: whether

or not the answer was an instance of mindless math (MM) in which participants gave the

incorrect mathematical answer and whether or not the answer was correct. Although these

two dependent variables are related, they are not identical because it is possible to give an

incorrect answer that does not match the MM response (e.g., saying that the volume of a

3’ x 3’ x 3’ hole is 20 cubic feet). The joint use of both dependent variables allows us

to distinguish between noise and MM responses. We pre-registered the MM responses for

each problem.
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2.2 Results

As shown in Table 1, making the numeric elements more complex increased the rate of

MM responses. These effects were significant for each problem and overall (all ps < .001

using Fisher’s exact test). In these problems, harder math difficulty led to a a higher rate

of mindless math responses. Further, the incidence of mindless math answers was high

overall (21%), and the MM responses made up the majority of errors (91%). There was a

corresponding decrease to the rate of correct answers, both for each item and overall (all ps

< .001).

2.3 Discussion

In Study 1, we presented three items where increasing the numeric demands of the numerical

content led to participants responding with more mindless math answers, and so less

accurately. We have replicated this result with these items many times. We also ran two

studies — Study S3 and Study S4 — that tested whether other items exhibited this property.

These studies tested a total of 9 items, of which 7 displayed the pattern whereby mindless

math was more common when the numeric demands were higher, and thus accuracy was

lower. Three of these items displayed statistically significant effects of the impact of numeric

demands on both correct and mindless math responding. In short, we found the mindless

math effect across some, but not all, of our different problems. In these supplementary

studies, we also found that participants who scored higher on the Cognitive Reflection Test

(Frederick, 2005) and Berlin Numeracy Test (Cokely et al., 2012) were more accurate and

provided fewer MM responses, but neither of these scales interacted with our manipulation

of the numeric demands of the problems.

Subjects performed unnecessary mathematical operations more often when those oper-

ations were more difficult. In the next study, we tried to understand whether participants

who provided correct answers were able to avoid performing the mindless math completely

or whether they computed but rejected it. Second we investigated whether greater scrutiny

of question wording arose because problems in the easy condition were “too easy”, leading

respondents to suspect a trick.

3 Study 2

Study 1 suggests that problems whose solutions require no math are nevertheless solved

at lower rates when the tempting, but unnecessary math is more difficult. This is because

people do this math and return more MM answers. Yet it is less clear how people arrive at

correct answers. It could be the case that when the math is easier, people do the math, and

then have time left over to scrutinize their answers. This extra time could lead people to

realize that the sum is incorrect, and revisit their representation to reach a correct answer.

Alternatively, when the math is easier, people may feel less pressure to start quickly, and
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spend more time representing the problem. We compare the evidence for each of these two

explanations in Study 2.

We also wanted to test whether people perceived a trick from the experimenter at a

higher rate when the math was easier. It could be the case that when the math is easy,

people do not believe that someone would ask them to do it. This could lead people to

perceive that the experimenter is trying to trick them, which could lead them to reread the

question and reach the correct problem representation. To test this, we asked respondents

to report whether they perceived a trick and whether they re-read the question.

Finally, to address the possibility that the observed mindless math effect was an artifact

of the specific numbers we used — either because these numbers specifically inflated the

temptation of the math, or because respondents inferred from their presence a specific

intention from the experimenter — we designed a study where participants answered a

single study item in which they selected all of the numbers themselves.

3.1 Methods

Participants. Participants (N = 602) were recruited from Amazon’s Mechanical Turk

platform (registration: https://osf.io/y35w2). A further one-hundred fifty-seven participants

were excluded prior to random assignment due to failing our comprehension check. We

collected no data from these participants. The final sample of 602 respondents (Mean age =

38.2) contained 254 females and 348 males. Participants were paid $0.31 for participation.

Procedure. All participants were given a version of the chips problem used in Study

1. As in Study 1, we manipulated the levels of the numeric demands. In this case, the

manipulations were created by having subjects choose their own numbers from lists we

manipulated: we attempted to induce participants to view the numbers as their choice,

rather than the experimenter’s choice.5

After providing consent, participants were asked to select three numbers from three

identical dropdown menus. Half the subjects were randomly assigned to a dropdown list

containing values ending in round numbers (0.5 to 5 in increments of 0.5). The other half

saw a harder list containing values ending in less round numbers (e.g., 1.05, 3.80, etc.); see

Table 2. After subjects chose three numbers, they read the chips problem with these values

instantiated as the prices of the three items in a chips problem: Imagine Joey is going to the

store to buy a pack of chips. A bottle of water costs [N1], a pack of chips costs [N2] and a

pack of gum costs [N3]. How much does he spend in total? (in dollars)

After answering, participants were presented with a menu of possible strategies they

might have used in answering the question (see Table 3). Participants were asked to report

which process best described how they reached their answer and how many times they read

5Asking participants to choose their own numbers could encourage them to add them, as they may take

ownership of the numbers and wish to do something with them. Yet this can’t be the sole explanation of

mindless math, as people still perform operations on the numbers in Study 1 when they do not choose them.
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Table 2: Drop down lists of numbers to instantiate into chips problem. (Subjects did not

see the word “easier” or “harder”.)

Easier Harder

0.50 0.30

1.00 0.75

1.50 1.05

2.00 1.70

2.50 2.15

3.00 2.60

3.50 3.35

4.00 3.80

4.50 4.40

5.00 4.85

the first sentence of the chips problem. If they answered that they read the first sentence

more than once, they were then asked to select all options that applied to why they re-read

the first sentence. Finally, participants were asked how difficult the problem was relative

to their expectations, coded from -3 (a lot easier than expected) to 3 (a lot harder than

expected).

3.2 Results

We again found that participants in the harder numeric demands condition gave the MM

answer at a higher rate (68% versus 53%, Fisher’s exact p < .001) and the correct answer at

a lower rate (17% versus 37%, p < .001). This shows that the effect is robust when it is less

likely that participants infer a specific intention from the experimenter about the presented

numbers. Respondents are tempted to do the unnecessary math, even when it is of their

own construction.

In comparing participants’ self-reports of their processes, we found that participants in

the easier condition were significantly less likely to pursue the wrong strategy of doing the

math (Proportioneasier = 0.53 vs. Proportionharder = 0.69, p < .001), and more likely to pursue

the normative strategy of doing no math (Proportioneasier = 0.34 vs. Proportionharder = 0.18,

p < .001). There were no significant differences in the rate at which participants reported

that they completed the sum but did not incorporate it into their answer (Proportioneasier =

0.13 vs. Proportionharder = 0.13, p = 1.00). This evidence suggests that participants in the

easier numeric demands condition were more likely to represent the problem correctly the

first time around, and thus avoid the need to do any math.

Accurate participants overwhelmingly reported that they did not complete the math

(89% in the easier numeric demands condition and 88% in the harder numeric demands

1216

http://journal.sjdm.org/vol17.6.html


Judgment and Decision Making, Vol. 17, No. 6, November 2022 Mindless math

Table 3: Process questions from Study 2.

Problem solving strategy Please select the option that best describes how you reached

your answer. Please be honest, it will not affect your

payment or approval in any way.0

• I did not add any numbers together.

• I added numbers together, but did not use the sum in

my final answer.

• I added numbers together, and I used the sum in my

final answer.

Reading first sentence How many times did you read the first sentence of the

problem?

______

Reason for re-reading Why did you reread it? Please check all that apply.

• I could not remember the question.

• The problem looked easier than I expected.

• I thought the experimenter might be tricking me.

Experienced difficulty This question was:

• A lot easier than expected.

• Somewhat easier than expected.

• Slightly easier than expected.

• About as difficult as I expected.

• Slightly harder than expected.

• Somewhat harder than expected.

• A lot harder than expected.

0 It is possible that people interpreted this question as only asking about operations they

performed to directly reach the final answer, and not earlier steps that were conducted

prior to the processes that produced that final answer.

condition). A smaller percentage of accurate participants indicated that they completed

math but did not use it (10% in each condition).6 On the other hand, most MM participants

(93% in the easier condition and 92% in the harder condition) reported that they completed

math and used it (as we would expect). Overall, this evidence suggests the different numeric

demand levels affected how participants represented and processed the problem prior to

completing math, rather than through allowing them additional time to go back and check

6Of the participants who gave neither correct nor MM responses, a high rate of respondents (50%) indicated

that they did math but did not use it. We cannot identify any possible alternative interpretation of the question

that led to these results. These participants appear to just be noisy.
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their answers.

One factor that could encourage people to scrutinize their representations and avoid

doing math would be suspicion that an especially easy sum is not the correct operation.

Though slightly more participants indicated they re-read the stem in the easier condition

relative to the harder condition (48.5% vs. 45.8%), there was no significant difference in

participants’ reports of the number of times they read the first sentence of the problem

across numeric demands conditions (Measier = 1.58 vs. Mharder = 1.62, t(585) = –0.60 p =

.500), suggesting this is not the explanation.

To further probe this, we used the numeric demands and the number of times the

participant read the item as predictors of whether a participant reached a correct answer.

Both numeric demands (b = –1.18, p < .001) and times read (b = 0.591, p < .001) achieved

statistical significance: the hard-easy effect remained even after controlling for the number

of times a respondent read the problem. In fact, when including harder numeric demands,

times read, and their two-way interaction in the model, there was a significant interaction

(b = –0.655, p = .007), suggesting that harder numeric demands reduced the benefit of

re-reading the problem.

Among the subset of participants who did re-read the problem (n = 284), there were

no differences in the reasons they (non-exclusively) reported for why they chose to re-

read the problem across numeric demands condition. Specifically, subjects reported the

following justifications for why they re-read the question stem at the same rates across

conditions; I could not remember the question (Proportioneasier = 0.12 vs. Proportionharder =

0.14, p = .726), The problem looked easier than I expected (Proportioneasier = 0.46 vs.

Proportionharder = 0.51, p = .406), and I thought the experimenter might be tricking me

(Proportioneasier = 0.73 vs. Proportionharder = 0.65, p = .160).7 It does not appear that the

hard-easy effect is explained by suspicion of a trick in the easier numbers condition.8

Participants did report that the problems in the easier numeric demands condition were

significantly easier (relative to their expectations) than participants in the harder numeric

demands condition (Measier = –1.27 vs. Mharder = –0.82, p = .002). This result suggests that

participants’ perceptions of the difficulty of the problem may have contributed to whether

they did the math or not, but not due to suspicion of the experimenter leading them to

re-read the question.

7These categories are not wholly exclusive — someone could suspect a trick because the question was

easier than expected — which is why participants were able to select more than one possible reason for

re-reading.

8Note that when collapsing across numeric demands conditions, correct respondents reported re-reading

the question stem more frequently than mindless respondents (Mcorrect = 1.91, MMM = 1.41, t(388) = 8, p <

.001), in part because they suspected a trick (Proportioncorrect = 0.62 vs. ProportionMM = 0.22, p < .001) and

in part because the problem was easier than expected (Proportioncorrect = 0.34 vs. ProportionMM = 0.17, p <

.001).
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3.3 Discussion

In Study 2 we again found a higher rate of mindless math when numeric demands were

harder, replicating Study 1’s results in a new design that allowed participants to select their

own numbers. We also ruled out several possible explanations for the hard-easy effect:

Participants in the easier numeric demands condition did not indicate greater suspicion of

experimenter tricks that led to them re-reading the question, though it did appear that the

returns to re-reading the stem may be higher when the numeric demands were easier. In

other words, though participants suspecting a trick from the experimenter does not appear

to be a compelling explanation of the observed effect, harder numeric demands appear to

impede people’s ability to correctly solve the problem even when re-reading the stem.

Although self-reported decision processes are subject to potential response biases

(Austin & Delaney, 1998; Ericsson & Simon, 1998), Study 2 suggests that participants

who are able to reach correct answers do not complete any math, but do re-read and scru-

tinize the problem more thoroughly. People got the answer right or wrong for the same

reasons in both the easier and harder conditions, and further work is required to understand

why the reasoning processes that led to reaching correct answers were differentially utilized

across the numeric demands conditions.

4 Study 3

In Study 1 we found evidence that, in our problems, increasing the numeric demands of

tempting but unnecessary math caused participants to give more mindless math answers

and fewer correct ones. In Study 2, we replicated this result with a new design, and found

that the difference in participants’ performance (in terms of the rate of correct and MM

responses) did not seem to be explained by participants re-reading the question or suspecting

experimenter tricks at a different rate.

In Study 3, we sought to test the relationship between numeric demands and accuracy

over a wider range of values and with a behavioral measure of math difficulty. Participants

either responded to a conflict version of the chips problem (i.e., the original) or a non-conflict

version (where the correct answer did involve a sum). This design allowed us to analyze

one set of participants’ accuracy in the conflict version, and another set of participants’

response times in the non-conflict version (i.e., how long did the tempting math take to

complete). The participants’ response times in the non-conflict version served as a measure

of the difficulty of the math: accuracy was generally very high in these conditions and so

this variable captured how long on average it took to do the math correctly. As a result, a

negative correlation between the response times taken to solve the non-conflict versions and

the rate of correct responding in the conflict versions would show that as the math got more

difficult, people were less able to reach correct answers in the conflict versions where no

math was required. We predicted that this would be the case, consistent with the difficulty

effect observed between conditions in Studies 1 and 2.
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4.1 Methods

Participants. Participants (N = 1005) were recruited from Amazon’s Mechanical Turk

platform (registration: https://osf.io/mysut). 208 participants were prevented from com-

pleting the study for failing our comprehension check (prior to random assignment). This

left us with 797 complete observations.9 The sample (Mean age = 36.3) was 44.5% male.

Participants were paid $0.20 for participation.

Procedure. After providing consent, participants answered a version of the chips problem

used in Studies 1 and 2. We manipulated two independent variables in an 8 x 2 factorial

between-subjects design. The independent variables were the numeric demands of the math

in the study item and whether the item was the conflict version of the problem in which the

math is tempting but unnecessary (as in Studies 1 and 2) or a non-conflict version in which

the tempting math is the correct approach. We use the term conflict to convey whether an

intuitive response is cued that is different from the normative response (De Neys, 2012;

Evans, 2010).10

Table 4a shows the eight levels of math difficulty: The first three levels used only whole

dollars (e.g., $2.00), the next two levels used dollar amounts that varied in the first decimal

place (e.g., $1.30), and the next three levels used dollar amounts that varied in first and

second decimal places (e.g., $3.25). Table 4b shows two versions of a problem with the

same level of numeric demands. On the left is the conflict version (as used in Studies 1 and

2) in which people may erroneously respond as if Joey is buying all three items. On the

right is the non-conflict version in which the representation of the problem as a sum is the

correct one.

As we continued to increase the difficulty of the numeric demands conditions, people’s

attempts to do math included more errors. Thus, here we focused on the rate of correct

responses (which imply an absence of performing mindless math) rather than mindless

math responses (which demonstrate its presence). Further, there was no MM response

to the non-conflict version, as the correct response was computing the sum. As well as

accuracy, we also measured participants’ response times.

4.2 Results

In Table 4a, we see that non-conflict items that were designed to be harder did in fact take

more time on average to answer (as shown by the geometric mean response time increasing

9We had initially pre-registered our intention to remove a further 29 participants for responding with the

incorrect sum in the non-conflict version of the ‘chips problem’ to use the condition as a measure of how long

it took to successfully complete the sum, but it was pointed out to us that this introduced a confound. Our

statistical analyses were robust in both cases, as is noted later.

10The conflict is between the participant’s intuitively cued response and the correct response; participants

may not feel a sense of conflict.
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Table 4: A: The 8 levels of numeric demands for Study 3.

Numeric

Demands

Price of

Water

Price of

Chips

Price of

Gum

Geometric

Mean RT

(non-conflict)

Proportion

Correct (non-

conflict)

Proportion

Correct

(conflict) Difficulty

1 3.00 1.00 2.00 20.2 0.98 0.66 Easy

2 4.00 2.00 5.00 21.4 0.98 0.60

3 5.00 1.00 7.00 21.3 0.94 0.58

4 3.10 1.30 2.00 30.1 0.94 0.44 Medium

5 3.30 1.40 2.20 30.8 0.86 0.38

6 3.25 1.50 2.65 39.1 0.88 0.47 Hard

7 3.15 1.45 2.65 38.5 0.96 0.37

8 3.15 2.34 1.85 43.1 0.88 0.41

B: A non-conflict and conflict version of the ‘chips problem’.

Conflict Non-conflict

Imagine Joey is going to the store to buy a

pack of chips. A bottle of water costs

$3.00, a pack of chips costs $1.00 and a

pack of gum costs $2.00. How much does

he spend in total? (in dollars)

Imagine Joey is going to the store to buy a

bottle of water, a pack of chips and a pack

of gum. A bottle of water costs $3.00, a

pack of chips costs $1.00 and a pack of

gum costs $2.00. How much does he spend

in total? (in dollars)

across the range of numeric demands). The non-conflict versions were also answered less

correctly across the range of numeric demands (98% to 88%).

On conflict items, accuracy decreased to a greater degree as the tempting math got harder

– from 66% for the easiest to 41% for the hardest. Using logistic regression to predict correct

answers with the level of numeric demands (1–8)11, whether the problem was the conflict

version, and their two way interaction revealed that the slope was significantly steeper for

the conflict version (b = –0.026, p = .030). In other words, harder numeric demands had

a larger negative effect on accuracy for the conflict items than the non-conflict items (25

percentage points vs. 10).

A negative correlation between geometric mean response time in the non-conflict con-

dition and accuracy in the conflict condition (r(6) = –0.86; 95% CI [–1.00, –0.51]) supports

the central claim that participants are more likely to engage in mindless math (and less

likely to be accurate) when the math is harder.

11We used the pre-specified task difficulty as our measure of difficulty here because this analysis occurred at

the level of the individual rather than the level of the problem. For the problem-level analyses, we considered

the geometric mean response time for each difficulty level to be the best measure of problem difficulty.
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In a pre-registered one-tailed test of the Pearson’s product-moment correlation coeffi-

cient, this was statistically significant (p = .003). This relationship was robust if we included

only correct answers when we calculated the average log time taken in the non-conflict con-

dition (r = –0.86, p = .003), and when using our a priori ranking of the difficulty of numeric

demands (1–8), rather than a response time based measure (r = –0.87, p = .002).

4.3 Discussion

Study 3 complemented earlier findings by showing that a behavioral measure of math

difficulty (average response time to reach a correct answer in a non-conflict version) was

negatively associated with accuracy in conflict versions of problems over a range of numeric

demands. For the non-conflict items, the effect was smaller. In the discussion, we offer a

possible interpretation of why harder numeric demands might reduce accuracy and increase

the rate of mindless math.

5 General Discussion

Across three pre-registered studies (total N = 3,193), we studied the relationship between

the difficulty of tempting math, problem representation, and problem solving. We found that

higher numeric demands led to people performing mindless math at a higher rate, giving

answers based on unnecessary and inappropriate calculations. In self-reports, participants

who reached correct answers generally said that they did not perform any math. This result

suggests that harder numeric demands lead to reduced accuracy because they induce people

to do math, rather than because they leave less time to scrutinize the math they’ve done.

There are several possible reasons why harder numeric demands might induce someone

to do math, or otherwise be less skeptical that math is the right thing to do. To identify

some of these, in a supplementary study we collected item-level ratings of some properties

of the problems from Study 3. Essentially we looked for variables that covaried with math

difficulty that could mediate the relationship between difficulty and likelihood of performing

mindless math. We found two variables that were strongly associated with the difficulty

of the math: the anticipated cognitive effort associated with the math (r = 0.93), and the

belief that doing the math would be more impressive (r = 0.86). Each of these factors was

associated with a reduced likelihood that participants solved the problem correctly and a

greater likelihood of performing mindless math. These are two possible pathways that might

explain the relationship between math difficulty and people giving mindless math responses

— the former by leading to reallocation of attention away from problem representation, and

the latter by increasing the social returns to performing the math. For further details of

these analyses and our consideration of alternative mechanisms, refer to the supplement.

At a high level, research in judgment and decision making argues that different pro-

cesses guide intuition (System 1) and deliberation (System 2), where deliberation is often
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needed both to detect and correct errors that arise from intuition (Kahneman, 2011; Slo-

man, 1996). The current research represents an interesting example where one System 2

process (performing math operations) distracts attention from a second System 2 process

(monitoring for errors in problem representation). The errors come from System 2 being

actively engaged in the wrong deliberative task, rather than not being engaged at all. People

are not being lazy, but misguided. Kahneman (2000) notes that for System 2 to be able to

correct a System 1 reasoning error, the cues that evoke applying a rule must be present, and

the rule must be known. The act of doing math appears to suppress rather than elucidate

the fact it is the wrong approach, which makes overcoming this error especially difficult.

In this sense, working in an incorrect problem representation is like attempting to solve a

problem without the necessary inferential rule — without this contextualizing information,

trying harder may not be very helpful (Lawson et al., 2020).

Given that the benefits of engaging in deliberation are frequently contingent — either on

possessing a rule (as in Lawson et al. (2020)) or forming a good problem representation —

attempts to debias reasoning errors may benefit from guiding people to a process as well as

a decision speed (Larrick & Lawson, 2021). For example, consider Heath & Heath’s (2013)

WRAP framework that compels decision makers to: Widen your options, Reality-test your

assumptions, Attain distance before deciding, and Prepare to be wrong. Such a framework

provides people with guidance for what to do with additional time spent deliberating, which

may otherwise be wasted. Similarly, Ralph Keeney’s (1996) “value-focused thinking” aims

to provide guidance for how to create better alternatives for decision problems, which helps

to guide how to productively use time spent deliberating. In the case of people performing

mindless math, a debiasing intervention might go past telling people to deliberate — which

may only lead to people more diligently performing unnecessary math — and instead ask

decision makers to list the elements of the problem and draw a diagram that establishes how

they relate to each other, before engaging in any computation.

People’s propensity to jump into tasks has widespread implications in organizational

contexts. In strategic problem-solving, researchers have highlighted the presence of a

“plunging-in bias”, where people start solving problems before understanding them (Bhard-

waj, Crocker, Sims & Wang, 2018). The present research shows empirically how this ten-

dency can be harmful, as failing to represent a problem correctly can lead to mindless math.

In our problems, people would benefit from spending more time representing the problem

up front, rather than jumping into the math. The general importance of this is summarized

in a saying from the U.S. Navy Seals: “slow is smooth, smooth is fast”.

A key question that follows from highlighting the pitfalls of getting underway too

quickly is, how can we incentivize people taking their time represent problems? One reason

why people might jump into doing math is that the output of such operations is tangible

and demonstrates effort, despite being wrong. The act of representing a problem is less

tangible and therefore harder to hold up as demonstrable proof of work. Yet good processes

— which sometimes can seem intangible — are essential to organizational success. In
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uncertain environments, organizations should want their members to fail quickly and often,

and constantly learn from their mistakes. This requires setting out in directions that provide

opportunities to learn, and consistently re-evaluating one’s approach. The only way to

achieve this is through a good process — rather than over-emphasizing specific outcomes.

To avoid the errors of diving into problems too quickly and misrepresenting them, greater

emphasis must be placed on these processes.

A notable implication of hard-easy effect observed with mindless math is that this

propensity to jump into doing something will be particularly pronounced in situations

when the task is difficult, which presumably warrant even more time spent representing

the problem, rather than less. Organizations could seek to safeguard against this tendency

by putting embargos on project tasks (times they cannot be completed before) rather than

deadlines. Setting an external time to start implementing could ensure that representing a

problem is given sufficient attention, thus minimizing the likelihood of acting mindlessly.

5.1 Limitations

One limitation of the present work is the specificity of the problems — in the discussion

of Study 1 we referenced some additional cases of the hard-easy mindless math effect, but

this effect will not be present for most problems. As a result, our conclusions are limited to

cases where a task invites people to dive into doing familiar operations, but these operations

are not helpful for solving the task.

Second, though Study 3 showed that over some ranges increasing the numeric demands

of tempting calculations increases the rate of mindless math in our problems, at some point

this effect inverts, as debilitatingly difficult computations may also serve as a cue to reinspect

one’s representation of a problem. Thus, increasing the numeric demands of problems may

increase or decrease respondents’ use of mathematical strategies. In Table 5 we see this –

moving from the easiest problem in the first row to the harder one in the second, accuracy

decreases, but for the most difficult computation (the last row), accuracy is higher relative

to the moderately difficult version (row two).

Another limitation of the present research is that it contains data only from online

samples facing low stakes. For example, though the MTurk population is highly attentive and

engaged12 (Hauser & Schwarz, 2016), it is not representative of the broader US population

(Huff & Tingley, 2015), and hence our results may look different in a different sample. Yet it

is unclear whether higher stakes would improve accuracy or not. Larger financial incentives,

for example, might lead to broader allocation of attention to tasks such as representation,

but could simply induce greater application of effort to the wrong strategy, which would

not improve accuracy (Lawson et al., 2020; Enke et al., 2021). It would also be beneficial

to expand the field of problems studied to those that involve more complex sequences of

12Perhaps unrepresentatively so.
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Table 5: The rate of correct and mindless answers across an even wider range of numeric

demands.

Joey went to the store and bought a pack of chips. A bottle

of water costs N1, a pack of chips costs N2 and a pack of

gum costs N3. How much did he spend in total? (in dollars) Percentage of answers. . .

Price of water (N1) Price of chips (N2) Price of gum (N3) Correct Mindless Neither

$3.00 $1.00 $2.00 0.58 0.41 0.03

$1.05 $0.75 $1.70 0.46 0.51 0.03

$0.69 $0.93 $3.43 0.52 0.39 0.08

$3.13 $2.43 $7.26 0.63 0.29 0.07

computations. We speculate that with greater complexity, the temptation to engage in

mindless math may be stronger, and continue to impede identifying the correct path.

5.2 Conclusion

When faced with difficult tasks, people are often eager to start doing something. But this

eagerness may preclude them from correctly representing the problems that they are so

eager to start solving. When we ask people to “take their time”, we have to be more specific

about when they should take their time. The execution of operations gives the illusion of

progress, but if the problem is represented incorrectly, it remains just that, an illusion.
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