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Tailored proper scoring rules elicit decision weights

Arthur Carvalho*

Abstract

Proper scoring rules are scoring methods that incentivize honest reporting of subjective probabilities, where an agent

strictly maximizes his expected score by reporting his true belief. The implicit assumption behind proper scoring rules

is that agents are risk neutral. Such an assumption is often unrealistic when agents are human beings. Modern theories

of choice under uncertainty based on rank-dependent utilities assert that human beings weight nonlinear utilities using

decision weights, which are differences between weighting functions applied to cumulative probabilities.

In this paper, I investigate the reporting behavior of an agent with a rank-dependent utility when he is rewarded using

a proper scoring rule tailored to his utility function. I show that such an agent misreports his true belief by reporting a

vector of decision weights. My findings thus highlight the risk of utilizing proper scoring rules without prior knowledge

about all the components that drive an agent’s attitude towards uncertainty. On the positive side, I discuss how tailored

proper scoring rules can effectively elicit weighting functions. Moreover, I show how to obtain an agent’s true belief from

his misreported belief once the weighting functions are known.
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1 Introduction

An agent’s assessment of the likelihood of a future event

in which he has no stake may be of interest to others. For

example, a financial investor may be interested in the prob-

ability a market expert assigns to the increase of a certain

stock price. In the medical domain, a patient might want

to know the likelihood of success of a treatment before

deciding whether to undergo that treatment.

Strategic agents are not necessarily honest when report-

ing their beliefs. For example, Nakazono (2013) reported

that governors of the Federal Open Market Committee

tend to report forecasts close to the previous consensus,

whereas non-governors tend to report forecasts far away

from the previous consensus. Nakazono concluded that

both governors and non-governors behave strategically.

In cases where agents behave strategically, a method

to promote honest reporting is crucial. Proper scoring

rules are traditional scoring methods that induce honest

reporting of subjective probabilities, in a sense that an

agent maximizes his expected score from a proper scor-

ing rule by reporting his true belief (Winkler & Murphy,

1968). Hence, the implicit assumption behind proper scor-

ing rules is that agents are risk neutral, i.e., that they be-

have so as to maximize their expected scores.
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The assumption of risk-neutral behavior is hardly com-

pelling when the underlying agents are human beings.

Several violations of risk neutrality have been reported in

the literature (Allais, 1953; Holt & Laury, 2002; Starmer,

2000; Tversky & Kahneman, 1992). Winkler (1969) sug-

gested an approach to tailor a proper scoring rule to an

agent’s nonlinear utility function. Under Winkler’s ap-

proach, however, agents’ utilities are still weighted by

their subjective probabilities.

As I elaborate later in this paper, reporting a belief

under a proper scoring rule is equivalent to making a

choice under uncertainty. Consequently, one can analyze

an agent’s reporting behavior under different decision the-

ories. Modern models of individual choices under uncer-

tainty based on rank-dependent utilities assert that nonlin-

ear utility functions are weighted by decision weights, in-

stead of subjective probabilities (Quiggin, 1982; Schmei-

dler, 1989). Decision weights are differences between

weighting functions applied to cumulative probabilities.

Thus, according to traditional rank-dependent models, an

agent’s attitude towards uncertainty is driven by both a

utility function and weighting functions.

In this paper, I investigate how an agent who makes de-

cisions based on a rank-dependent utility reports his belief

under a proper scoring rule tailored to his utility function.

I show that such an agent misreports his true belief by re-

porting a vector of decision weights. Decision weights

reflect a cognitive bias concerning how human beings deal

with probabilities when making choices under uncertainty

and, thus, they should not be taken as a measure of an

agent’s true belief. Thus, my findings highlight the neces-
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sity of knowing all the components that drive an agent’s

attitude towards uncertainty before appropriately using a

proper scoring rule to elicit that agent’s belief.

On the positive side, I show how a proper scoring rule

tailored to an agent’s utility function can effectively elicit

that agent’s weighting functions. Moreover, I suggest re-

cursive procedures to obtain the agent’s true belief once

his weighting functions are known.

2 Related work

The task of inducing honest reporting of private informa-

tion has been extensively studied in the fields of mecha-

nism design and decision theory. My focus in this paper

is on the elicitation of private information as subjective

probabilities (beliefs) over uncertain outcomes.

Proper scoring rules provide a prominent technique to

induce honest reporting of subjective probabilities. Proper

scoring rules have been used in a variety of domains, e.g.,

when sharing rewards amongst a set of agents based on

peer evaluations (Carvalho & Larson, 2010, 2011, 2012),

when incentivizing agents to accurately estimate their own

efforts to accomplish a task (Bacon et al., 2012), to elicit

opinions from policy makers regarding the occurrence of

political and economic events (Tetlock, 2005), etc.

A standard assumption when using proper scoring rules

is that agents are risk neutral. Focusing on the quadratic

scoring rule, Winkler and Murphy (1970) investigated the

effects of nonlinear utilities on how agents report their

beliefs. More precisely, for some specific utility func-

tions, Winkler and Murphy (1970) showed that a risk-

seeking agent reports a very sharp probability distribution,

whereas a risk-averse agent reports a probability distribu-

tion close to the uniform distribution. Winkler (1969) dis-

cussed how any proper scoring rule can be adjusted to an

agent’s nonlinear utility function, resulting in what I refer

to in this paper as tailored proper scoring rules.

The aforementioned works are still within the expected

utility theory framework. Modern theories of choice under

uncertainty based on rank-dependent utilities assert that,

aside from nonlinear utilities, probability sensitivity also

plays a role in defining an agent’s attitude towards uncer-

tainty (Quiggin, 1982; Schmeidler, 1989). Focusing on

binary outcomes, Offerman, Sonnemans, Van De Kuilen,

and Wakker (2009) discussed how to calibrate a posteri-

ori beliefs reported under the quadratic scoring rule by

agents who take decisions based on rank-dependent util-

ities. Kothiyal, Spinu, and Wakker (2011) extended the

work by Offerman et al. (2009) to all positive proper scor-

ing rules. Moreover, Kothiyal et al. (2011) briefly men-

tioned that agents with rank-dependent utilities report vec-

tors of decision weights instead of their true beliefs for the

specific case when their utility functions are linear.

I generalize the results of Kothiyal et al. (2011) to any

proper scoring rule, any finite number of outcomes, and

any strictly increasing utility function. More specifically, I

show that, when the utility function of an agent who makes

decisions based on a rank-dependent utility is known and

incorporated into a proper scoring rule, the agent still mis-

reports his belief by reporting a vector of decision weights.

Such reporting behavior happens because probability sen-

sitivity, which is defined in terms of weighting functions,

plays a crucial role when an agent reports his belief under

a proper scoring rule.

I also show how to elicit weighting functions using tai-

lored proper scoring rules. A popular method for eliciting

weighting functions was proposed by Abdellaoui (2000).

Abdellaoui’s method implicitly assumes that agents are

honest when reporting indifferences between lotteries. My

approach, on the other hand, is based on the reports of

beliefs for events with known objective probabilities (de-

cision under risk), and honest reporting maximizes an

agent’s rank-dependent utility, thus resulting in a more re-

liable elicitation process.

3 Proper scoring rules

Consider a set of exhaustive and mutually exclusive out-

comes θ1, θ2, . . . , θn, for n ≥ 2. I assume that agents have

beliefs (subjective probabilities) regarding the occurrence

of the outcomes. Formally, an agent’s belief is the prob-

ability vector p = (p1, . . . , pn), where pk is his subjec-

tive probability regarding the occurrence of outcome θk.

Agents are self-interested and, consequently, they are not

necessarily honest when reporting their beliefs. Therefore,

I distinguish between an agent’s true belief p, and his re-

ported belief q = (q1, . . . , qn).
Proper scoring rules are traditional devices used to pro-

mote honest reporting of subjective probabilities (Winkler

& Murphy, 1968). Formally, a scoring rule R(q, θx) is

a function that provides a score for the reported belief

q upon observing the outcome θx. Scores are some-

how coupled with relevant incentives, be they social-

psychological, such as praise or visibility, or material re-

wards through prizes or money. A scoring rule is called

proper when an agent maximizes his expected score (ac-

cording to his own beliefs) by reporting a belief q that cor-

responds to his true belief p (Winkler & Murphy, 1968).

A strictly proper scoring rule means that an agent maxi-

mizes his expected score if and only if he reports q = p.

The expected score of an agent for a real-valued scoring

rule R(q, θx) is:

Ep [R(q, ·)] =

n
∑

k=1

pk R(q, θk) (1)

The best known strictly proper scoring rules, together
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with their scoring ranges, are:

spherical: R(q, θx) =
qx

√

∑n

k=1 q
2
k

[0, 1]

logarithmic: R(q, θx) = log qx (−∞, 0]

quadratic: R(q, θx) = 2qx −
n
∑

k=1

q2k [−1, 1]

For the sake of illustration, consider a coin toss exper-

iment with two outcomes (n = 2): θ1 = “heads” and

θ2 = “tails”. Consider that an agent i has a true be-

lief p = (0.4, 0.6). Assume that agent i reports the be-

lief q = (q1, q2), which is rewarded according to the

logarithmic scoring rule. Then, agent i’s expected score

is Ep [R(q, ·)] = p1 log q1 + p2 log q2 = 0.4 log q1 +
0.6 log q2. In the future, if outcome θ1 is the observed

outcome, then the score agent i receives is equal to log q1.

Since the logarithmic scoring rule is a strictly proper scor-

ing rule, agent i’s expected score is strictly maximized

when he is honest, i.e., when q = p = (0.4, 0.6). To

show this, note that Ep [R(q, ·)] = p1 log q1+p2 log q2 =
p1 log q1 + (1 − p1) log(1 − q1). Since the resulting ex-

pected score is concave in q1, the value of q1 that maxi-

mizes agent i’s expected score can be found by taking the

first-order derivative of Ep [R(q, ·)] with respect to q1, and

equating the result to zero, i.e.:

p1

q1
−

1− p1

1− q1
= 0 =⇒ p1 = q1

Selten (1998) and Jose (2009) provided axiomatic char-

acterizations of, respectively, the quadratic scoring rule

and the spherical scoring rule in terms of desirable proper-

ties, e.g., sensitivity to small probability values, symmetry,

etc. In a seminal work, Savage (1971) showed that any

differentiable strictly convex function J(q) that is well-

behaved at the endpoints of the scoring range can be used

to generate a proper scoring rule. Formally:

R(q, θx) = J(q)−

(

n
∑

k=1

∂J(q)

∂qk
× qk

)

+
∂J(q)

∂qx

For example, the logarithmic scoring rule can be de-

rived from J(q) =
∑n

k=1 qk log qk:

R(q, θx) =

n
∑

k=1

qk log qk −

(

n
∑

k=1

(log qk + 1)× qk

)

+

log qx + 1

= log qx

I say that a scoring rule is positive when all the re-

turned scores are nonnegative, i.e., R(q, θx) ≥ 0 for all

x ∈ {1, . . . , n}. The spherical scoring rule is an exam-

ple of a positive scoring rule. A negative scoring rule,

on the other hand, returns only nonpositive scores, i.e.,

R(q, θx) ≤ 0 for all x ∈ {1, . . . , n}. The logarithmic

scoring rule is an example of a negative scoring rule. Fi-

nally, a mixed scoring rule might return both positive and

negative scores. The quadratic scoring rule is an example

of a mixed scoring rule.

On a side note, I observe that proper scoring rules not

only induce honest reporting of subjective probabilities,

but they also measure the accuracy of reported beliefs, a

task often called forecast verification. In particular, the

more an agent moves probability mass to the observed out-

come, the higher the agent’s score will be.

3.1 Tailored proper scoring rules

An implicit assumption in the definition of proper scoring

rules is that agents are risk neutral, i.e., they report their

beliefs so as to maximize their expected scores. Since

argmax
q
Ep [R(q, ·)] = p, a risk-neutral agent has to

honestly report his belief under a proper scoring rule R

in order to maximize his expected score. Regarding risk

neutrality, Savage (1971) said the following in his seminal

work about the theoretical foundations of proper scoring

rules:

“This assumption is not altogether unobjection-

able; for it may imply that the person’s util-

ity function is linear in money. But such lin-

earity assumptions are made almost throughout

the present paper and are presumably tolerable

if only moderate sums of money are involved.”

(Savage, 1971, page 791)

In other words, the function that represents the value

that an agent derives from a score, called the utility func-

tion, is linear with respect to the range of the score used

in conjunction with the scoring rule. Theoretically, an

agent’s utility function is approximately linear when the

stakes are low (Arrow, 1971, page 100). In practice, how-

ever, human beings’ utility functions tend to become non-

linear when the stakes are high (Wakker, 2010, §2).

Expected utility theory tackles some of the problems

concerning risk neutrality by assuming that utility func-

tions might be nonlinear. More specifically, the curvature

of the utility function determines an agent’s attitude to-

wards uncertainty, e.g., a convex utility function implies

that the agent is risk seeking, whereas a concave utility

function indicates that the agent is risk averse. Risk-

neutral behavior arises only when the utility function is

linear. Naturally, agents are assumed to behave so as to

maximize their expected utilities.

In the context of proper scoring rules, an agent who be-

haves according to expected utility theory reports a belief

q so that q = argmax
z
Ep [U(R(z, ·))], where U(·) is

the agent’s utility function. Often in this setting, proper
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scoring rules are no longer proper, i.e., there are cases

where argmax
z
Ep [U(R(z, ·))] 6= p (Winkler & Mur-

phy, 1970). Winkler (1969) discussed how the composite

function S = U−1 ◦ R is a proper scoring rule under a

strictly increasing utility function U . That is, the scoring

rule S(q, θx) is tailored to the agent’s utility function. For

example, consider the logarithmic scoring rule R(q, θx) =
log qx, and a concave utility function U(y) = log y. Then,

the tailored proper scoring rule1 is:

S(q, θx) = U−1 (R(q, θx)) = elog qx = qx

Clearly, tailored proper scoring rules subsume tradi-

tional proper scoring rules since the latter assume that util-

ity functions are linear. In the following sections, I study

the reporting behavior of agents under tailored proper

scoring rules. Thus, an implicit assumption in my anal-

ysis is that an agent’s utility function is known a priori,

for example, it was previously elicited using an approach

such as the tradeoff method (Wakker & Deneffe, 1996).

However, I make no assumptions on U , except that it is

a strictly increasing function, which implies that there ex-

ists an inverse function U−1 defined over the range of the

utility function U .

4 Rank-dependent utility

When selecting and reporting a probability vector q under

a tailored proper scoring rule, an agent is essentially taking

a decision under uncertainty, where the potential payoffs

resulting from his choice are defined by S(q, θx), for x ∈
{1, . . . , n}. Consequently, an agent’s reporting behavior

can be analyzed from the perspective of different decision

theories under uncertainty.

Unarguably, expected utility theory represents a crucial

advancement in decision theory under uncertainty. Ex-

pected utility theory suggests an elegant and simple way

of combining subjective probabilities and payoffs into a

single measure of value, which has a number of appeal-

ing theoretical properties. However, several violations of

the premises of expected utility theory have been widely

reported. Many of these violations, such as the com-

mon consequence effect and the common ratio effect, can

be explained by models that take subjective attitudes to

probability into account, such as rank-dependent models

(Quiggin, 1982; Schmeidler, 1989).

Rank-dependent models assert that both sensitivity to

payoffs and sensitivity to probabilities generate deviations

1The term tailored scoring rule was first used by Johnstone, Jose, and

Winkler (2011) to describe a proper scoring rule tailored to a specific

decision-making problem. My definition is different in that a tailored

proper scoring rule is tailored to an agent’s utility function. It is also

noteworthy that my setting is different than the scenario described by

Johnstone (2011), where an agent (forecaster) might have to consider an

user’s utility function when reporting his belief (forecast).

from risk neutrality. In particular, these models convert

subjective probabilities into decision weights, and agents

are assumed to take decisions so as to maximize their

rank-dependent utilities (RDU). A possible interpretation

of decision weights is that they represent a cognitive bias

concerning how human beings deal with probability val-

ues when making choices under risk and uncertainty.

Rank-dependent models are amongst the most satisfac-

tory decision theories under uncertainty (but, as discussed

later, other models may be better still). Starmer (2000) and

Camerer (2004) documented the superior predictive per-

formance of rank-dependent models over expected utility

theory for a range of phenomena, including the disposition

effect, the equity premium puzzle, asymmetric price elas-

ticities, the excess sensitivity of consumption to income,

elasticities of labour supply and asset pricing, etc.

By construction, rank-dependent models can explain

everything that expected utility theory can, but the con-

verse is false. Under expected utility theory, an agent re-

ports his true belief under a tailored proper scoring rule. In

the next sections, I show that this is no longer the case un-

der a rank-dependent model. In order to build intuition, I

first introduce RDU in terms of lotteries, which are event-

contingent payoffs. Thereafter, I extend the initial defini-

tion of RDU to tailored proper scoring rules and charac-

terize how an underlying agent reports his belief.

4.1 RDU and lotteries

Let l = [y1 : θ1, . . . , yn : θn] denote a lottery which yields

a payoff of yx ∈ ℜ if outcome θx occurs. Since one can

always rearrange the outcomes, I assume without loss of

generality that yn ≥ yn−1 ≥ · · · ≥ y1. Given that agents

have beliefs over the occurrence of the outcomes, I can

then represent a lottery as l = [y1 : p1, . . . , yn : pn], which

yields a payoff of yx ∈ ℜ with probability px.

A lottery is called positive when all payoffs are nonneg-

ative, i.e., yn ≥ yn−1 ≥ · · · ≥ y1 ≥ 0. I denote a positive

lottery by l+. A lottery is called negative when all pay-

offs are nonpositive, i.e., 0 ≥ yn ≥ yn−1 ≥ · · · ≥ y1.

I denote a negative lottery by l−. Finally, a mixed lot-

tery l± contains both positive and negative payoffs, i.e.,

yn ≥ yn−1 ≥ · · · ≥ yi ≥ 0 ≥ yi−1 ≥ · · · ≥ y1.

Focusing first on positive lotteries, rank-dependent

models state that the value that a human being assigns

to l+ is described according to his rank-dependent utility

(RDU) (Quiggin, 1982):

RDU
(

l+
)

=

n
∑

k=1

π+
k U(yk) (2)
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where:

π+
n = W+(pn)

π+
k = W+

(

n
∑

x=k

px

)

−W+

(

n
∑

x=k+1

px

)

,
(3)

for k ∈ {1, . . . , n − 1}. The function W+ : [0, 1] →
[0, 1], also known as the weighting function, is striclty

increasing, and it satisfies W+(0) = 0 and W+(1) =
1. Henceforth, I drop the superscript whenever talking

about weighting functions in general, and not only in the

domain of gains. As suggested by Gonzalez and Wu

(1999), the weighting functions model the “psychophysics

of chance”, i.e., the way human beings subjectively dis-

tort probability values. Common findings suggest that the

weighting function is a nonlinear transformation of the

probability scale that overweights small probabilities and

underweights moderate and high probabilities (Tversky &

Kahneman, 1992; Abdellaoui, 2000). In other words, the

weighting function displays an inverse-S shape: it is con-

cave near 0 and convex near 1. The weighting function

proposed by Tversky and Kahneman (1992) is:

W (ρ) =
ργ

(ργ + (1− ρ)γ)
1
γ

(4)

where γ ≥ 0.28 in order for W to be strictly increasing.

For γ = 1, the weighting function in (4) becomes the iden-

tity function. Decreasing γ results in a more pronounced

inverse-S shape. Figure 1 illustrates the weighting func-

tion in (4) for different values of γ.

There are two crucial points regarding the rank-

dependent utility in (2). First, as in the expected utility

theory, the value that an agent derives from a payoff in

a lottery is given by a strictly increasing utility function

U : ℜ → ℜ. Second, instead of an individual probability

value pk as in the expected utility theory, the weight of a

utility U(yk) in (2) is the difference between two trans-

formed ranks, W (pk + · · ·+ pn)−W (pk+1 + · · ·+ pn),
also called a decision weight. For a lottery l+, the rank of

a payoff yk is the probability of l+ yielding a payoff better

than yk, i.e., the rank of yk is equal to pk+1+pk+2+ · · ·+
pn. The weight of U(yk) is then the transformed marginal

contribution of the individual probability pk to the total

probability of receiving payoffs better than yk.

Under rank-dependent models, positive and negative

lotteries might be evaluated differently. For a negative lot-

tery l−, the rank-depend utility in (2) is now defined as:

RDU
(

l−
)

=

n
∑

k=1

π−

k U(yk)

Figure 1: The weighting function in (4) for different pa-

rameter values γ.
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where:

π−

1 = W−(p1)

π−

k = W−

(

k
∑

x=1

px

)

−W−

(

k−1
∑

x=1

px

)

,
(5)

for k ∈ {2, . . . , n}. While a decision weight π+
k de-

notes the marginal contribution of an individual proba-

bility value pk to the total probability of receiving better

payoffs, a decision weight π−

k denotes the marginal con-

tribution of an individual probability value pk to the total

probability of receiving worse payoffs, measured in terms

of a weighting function W− : [0, 1] → [0, 1].
Finally, for a mixed lottery l±, where yn ≥ yn−1 ≥

· · · ≥ yi ≥ 0 ≥ yi−1 ≥ · · · ≥ y1, the rank-depend utility

is now defined as:

RDU
(

l±
)

=

i−1
∑

k=1

π−

k U(yk) +

n
∑

k=i

π+
k U(yk)

4.2 RDU and tailored proper scoring rules

Without loss of generality due to a possible rearrangement

of outcomes, assume that the scores from a tailored proper

scoring rule S are ordered, i.e., S (q, θn) ≥ S (q, θn−1) ≥
· · · ≥ S (q, θ1). I note that the scores from a tailored

proper scoring rule can be stated in terms of a lottery:

[S(q, θ1) : p1, . . . , S(q, θn) : pn]. Consequently, when re-

porting a belief q, an agent is essentially defining the pay-

offs of a lottery, where the associated probabilities are sub-

jective probabilities. In other words, reporting a belief q

is equivalent to choosing a lottery amongst a potentially

infinite number of lotteries. This implies that an agent’s

reporting behavior can be analyzed from the perspective

of decision models such as rank-dependent models. For

a positive, tailored proper scoring rule S(q, θx), the rank-

dependent utility in (2) becomes:

n
∑

k=1

π+
k U (S (q, θk)) (6)
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Similarly, the RDU for a negative, tailored proper scor-

ing rule S(q, θx) is:

n
∑

k=1

π−

k U (S (q, θk)) (7)

Finally, the RDU for a mixed, tailored proper scoring

rule S(q, θx) is:

i−1
∑

k=1

π−

k U (S(q, θk)) +

n
∑

k=i

π+
k U (S(q, θk)) (8)

From the above equations, one might expect that an

agent who maximizes a rank-dependent utility will behave

differently than an expected-utility maximizer and, conse-

quently, will report a belief other than his true belief under

a tailored proper scoring rule. I discuss this point in the

following section.

5 Characterizing reporting behav-

ior under tailored proper scoring

rules and RDU

The following propositions characterize how an agent who

behaves to maximize a rank-dependent utility reports his

belief under a tailored proper scoring rule. In short, my

results indicate that such an agent reports a vector of deci-

sion weights, instead of his true belief.

Proposition 1. Let S(q, θx) be a positive, tailored proper

scoring rule where S(q, θn) ≥ S(q, θn−1) ≥ · · · ≥
S(q, θ1) ≥ 0. Assume that an agent reports his belief

q so as to maximize his RDU shown in (6). Then,

argmax
q

n
∑

k=1

π+
k U (S(q, θk)) = (π+

1 , π
+
2 , . . . , π

+
n ).

Proof. I start by noting that U (S(q, θx)) =
U
(

U−1 (R(q, θx))
)

= R(q, θx), for some proper scoring

rule R. If π+ = (π+
1 , π

+
2 , . . . , π

+
n ) is a probability vector,

then
∑n

k=1 π
+
k R(q, θk) = E

π
+ [R(q, ·)], as in equation

(1), and, consequently, argmax
q

∑n

k=1 π
+
k R(q, θk) =

π
+. Thus, I just need to prove that π+ = (π+

1 , . . . , π
+
n )

is indeed a probability vector. From (3), I deduce that
∑n

k=1 π
+
k = W+ (

∑n

k=1 pk) = 1. Since W+ is a strictly

increasing function and its image is equal to [0, 1], then

0 ≤ π+
k ≤ 1, for all k ∈ {1, . . . , n}, thus completing the

proof.

A similar result holds for negative, tailored proper scor-

ing rules, as shown in Proposition 2.

Proposition 2. Let S(q, θx) be a negative, tailored proper

scoring rule where 0 ≥ S(q, θn) ≥ S(q, θn−1) ≥ · · · ≥
S(q, θ1). Assume that an agent reports his belief q so as

to maximize his RDU shown in (7). Then,

argmax
q

n
∑

k=1

π−

k U (S(q, θk)) = (π−

1 , π
−

2 , . . . , π
−

n ).

Proof. Given that U (S(q, θx)) = R(q, θx), for some

proper scoring rule R, if π
− = (π−

1 , π
−

2 , . . . , π
−
n )

is a probability vector, then
∑n

k=1 π
−

k R(q, θk) =
E
π

− [R(q, ·)], as in equation (1). Consequently,

argmax
q

∑n

k=1 π
−

k R(q, θk) = π
−. Thus, I just need

to prove that π
− = (π−

1 , . . . , π
−
n ) is indeed a prob-

ability vector. From (5), I deduce that
∑n

k=1 π
−

k =
W− (

∑n

k=1 pk) = 1. Since W− is a strictly increasing

function and its image is equal to [0, 1], then 0 ≤ π−

k ≤ 1,

for all k ∈ {1, . . . , n}, thus completing the proof.

Propositions 1 and 2 imply that positive and negative

tailored proper scoring rules induce different reporting be-

havior whenever the weighting functions W+ and W− are

different. In other words, a simple positive affine trans-

formation of a proper scoring rule might induce differ-

ent reporting behavior. I illustrate this point in Section

5.1. I show in the following proposition that mixed, tai-

lored proper scoring rules induce agents to report decision

weights as well when W+(ρ) + W−(1 − ρ) = 1, for all

ρ ∈ [0, 1].

Proposition 3. Let S(q, θx) be a mixed, tailored proper

scoring rule where S(q, θn) ≥ S(q, θn−1) ≥ · · · ≥
S(q, θi) ≥ 0 ≥ S(q, θi−1) ≥ · · · ≥ S(q, θ1). Assume

that an agent reports his belief q so as to maximize his

RDU shown in (8). If W+(ρ) +W−(1− ρ) = 1, for any

ρ ∈ [0, 1], then

argmax
q

(

i−1
∑

k=1

π−

k U (S(q, θk)) +
n
∑

k=i

π+
k U (S(q, θk))

)

= (π−

1 , . . . , π
−

i−1, π
+
i , . . . , π

+
n ).

Proof. If π
± =

(

π−

1 , . . . , π
−

i−1, π
+
i , . . . , π

+
n

)

is a prob-

ability vector, then the result follows naturally because

U (S(q, θx)) = R(q, θx), for some proper scoring

rule R. Consequently, I just need to prove that π
±

is indeed a probability vector. From (3) and (5), I

have that
∑i−1

k=1 π
−

k +
∑n

k=i π
+
k = W−

(

∑i−1

k=1 pk

)

+

W+ (
∑n

k=i pk) = 1, where the last equality follows from

the assumption that W+(ρ) + W−(1 − ρ) = 1, for all

ρ ∈ [0, 1]. Since both W+ and W− are strictly in-

creasing functions and their images are equal to [0, 1],
then 0 ≤ π−

j , π
+
k ≤ 1, for all j ∈ {1, . . . , i − 1} and

k ∈ {i, . . . , n}, thus completing the proof.



Judgment and Decision Making, Vol. 10, No. 1, January 2015 Tailored Proper Scoring Rules Elicit Decision Weights 92

5.1 Numerical example

In this subsection, I illustrate the theoretical results proved

in Propositions 1 and 2 by using the weighting function

proposed by Tversky and Kahneman (1992) shown in (4).

Tversky and Kahneman (1992) found that the best fit for

their data happened when using W+ and W− as defined in

(4) with parameter values equal to, respectively, γ = 0.61
and γ = 0.69.

Consider an agent with belief p = (0.2, 0.8) who be-

haves so as to maximize his rank-dependent utility. Under

a positive, tailored proper scoring rule, Proposition 1 im-

plies that the agent reports:

q = (1−W+(0.8),W+(0.8)) = (0.393, 0.607)

Proposition 2 implies that the same agent reports:

q = (W−(0.2), 1−W−(0.2)) = (0.257, 0.743)

under a negative, tailored proper scoring rule. The de-

viation of the agent’s reported belief q from his true be-

lief p according to the mean absolute error is equal to:

0.5 × |1 − W+(0.8) − 0.2| + 0.5 × |W+(0.8) − 0.8| =
0.193, for a positive, tailored proper scoring rule, and

0.5×|W−(0.2)−0.2|+0.5×|1−W−(0.2)−0.8| = 0.057
for a negative, tailored proper scoring rule.

The above example illustrates that positive and nega-

tive tailored proper scoring rules might induce different

reporting behavior whenever the weighting functions W+

and W− are not equal to each other. In particular, tailored

proper scoring rules with positive scores seems to result

in stronger deviations from honest reporting and, conse-

quently, risk neutrality than with negative scores, a fact

that is empirically plausible (Wakker, 2010, page 264).

Furthermore, the above example illustrates that agents

overweight low probabilities by reporting probability val-

ues greater than their true beliefs, and they underweight

high probabilities by reporting probability values less than

their true beliefs.

6 Using tailored proper scoring

rules to elicit an agent’s weighting

functions

The results from the previous section are negative in nature

because they mean that RDU agents report biased beliefs

under tailored proper scoring rules. On the positive side,

I discuss in this section how tailored proper scoring rules

can elicit weighting functions in a parameter-free manner.

My approach assumes that there are two exhaustive and

mutually exclusive outcomes, σ1 and σ2, with known, ob-

jective probability values φ and 1 − φ. For example, σ1

and σ2 can be the outcomes “heads” and “tails” in an ex-

periment where a biased coin with known Bernoulli distri-

bution is tossed. An agent is then asked to report his belief

µ = (µ, 1− µ), for µ ∈ [0, 1].
Consider a proper scoring rule R(µ, σx), for x ∈

{1, 2}, defined as follows:

R(µ, σ1) = R′(µ, σ1)

R(µ, σ2) = R′(µ, σ2) + sgn(m)×m

where R′ is a bounded proper scoring rule, i.e., a proper

scoring rule where all the returned scores are real num-

bers, sgn is the sign function, and m is the maximum

score returned by R′. Then, by construction, R(µ, σ2) ≥
R(µ, σ1) for any µ, which means that R is comonotonic

(Kothiyal et al., 2011). I now construct a tailored proper

scoring rule to elicit µ, i.e., S(µ, σx) = U−1 (R(µ, σx)).
Since U−1 is strictly increasing, I then obtain S(µ, σ2) ≥
S(µ, σ1) for any µ, which implies that S also satisfies

comonotonicity.

In previous sections, for ease of exposition and

mathematical notation, I assumed that S (q, θn) ≥
S (q, θn−1) ≥ · · · ≥ S (q, θ1). I claimed that such an

assumption is without loss of generality because the out-

comes could always be rearranged a posteriori. In this

section, however, I do not allow the outcomes to be re-

arranged and, by construction, S(µ, σ2) ≥ S(µ, σ1) for

any belief µ. For example, in the aforementioned coin ex-

periment, one agent will always receive higher scores if

outcome σ2 = “tails” occurs than if outcome σ1 = “heads”

occurs, no matter what the agent reports.

First, consider the case where the resulting tailored

proper scoring rule S is negative, i.e., 0 ≥ S(µ, σ2) ≥
S(µ, σ1). Proposition 2 implies that an agent who max-

imizes a rank-dependent utility reports the probability

vector µ = (π−

1 , π
−

2 ) = (W−(φ), 1 − W−(φ)). In

other words, I obtain the value of W− for the objec-

tive probability value φ. For a sufficiently dense set of

objective probabilities, e.g., taking all values in the set

{0, 0.05, 0.1, . . . , 0.95, 1}, I obtain a parameter-free esti-

mate of the weighting function W−.

Alternatively, if S is a positive tailored proper scoring

rule, Proposition 1 says that an agent who maximizes a

rank-dependent utility reports the probability vector µ =
(π+

1 , π
+
2 ) = (1 −W+(1 − φ),W+(1 − φ)). Then, for a

sufficiently dense set of objective probabilities, I obtain a

parameter-free estimate of the weighting function W+.

Finally, if S is a mixed tailored proper scoring rule,

Proposition 3 says that an agent who behaves so as to max-

imize a rank-dependent utility reports the probability vec-

tor µ = (π−

1 , π
+
2 ) = (W−(φ),W+(1 − φ)), under the

assumption that W−(φ) + W+(1 − φ) = 1. Then, for

a sufficiently dense set of objective probabilities, I obtain
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a parameter-free estimate of both the weighting function

W− and the weighting function W+.

It is noteworthy that without the comonotonicity prop-

erty, π−

1 is always less than or equal to 0.5, and π+
2 is

always greater than or equal to 0.5 (Kothiyal et al., 2011).

Consequently, the weighting function W− could not be

estimated for probability values greater than 0.5, whereas

the weighting function W+ could not be estimated for

probability values less than 0.5.

On a final note, I observe that traditional methods for

eliciting weighting functions assume that agents report in-

differences between lotteries honestly (Abdellaoui, 2000).

Under my approach, on the other hand, it is in the best in-

terest of an agent to report µ honestly since this maximizes

his rank-dependent utility.

7 Obtaining true beliefs from vec-

tors of decision weights

In Section 5, I showed how tailored proper scoring rules

elicit vectors of decision weights from agents who behave

so as to maximize a rank-dependent utility. In Section 6, I

discussed how to use tailored proper scoring rules to elicit

an agent’s weighting functions. A natural question that

then arises regards how to combine these two results in

order to obtain an agent’s true belief p when that agent

reports a vector of decision weights. In the following sub-

sections, I show how an agent’s true belief can be obtained

by using simple recursive procedures. The proposed pro-

cedures are sound as long as S (q, θn) > S (q, θn−1) >

· · · > S (q, θ1), i.e., when there are only inequalities in the

scores from the tailored proper scoring rule. Otherwise,

the underlying proper scoring rule might have to satisfy

comonotonicity (Kothiyal et al., 2011).

7.1 Positive tailored proper scoring rule

If a positive, tailored proper scoring rule is used in the

elicitation process, then Proposition 1 says that the belief

q = (q1, . . . , qn) = (π+
1 , . . . , π

+
n ) is reported by a rank-

dependent utility maximizer, which implies that:

W+ (pn) = qn

W+ (pn−1 + pn) = qn−1 + qn

...

W+

(

n
∑

x=2

px

)

=

n
∑

x=2

qx

Once W+ is known, the above system of equations can

be solved by using backward substitution, i.e., by first

computing pn, then substituting that into the next equa-

tion to find pn−1, and so on. Starting with the base

case pn, I have pn = W+−1

(qn). For pn−1, I have

pn−1 = W+−1

(qn−1 + qn) − pn. More generally, for

all k ∈ {2, . . . , n − 1}, I obtain pk by solving the equa-

tion pk = W+−1

(
∑n

x=k qx) −
∑n

x=k+1 px. Finally,

p1 = 1−
∑n

x=2 px.

7.2 Negative tailored proper scoring rule

If a negative, tailored proper scoring rule is used in the

elicitation process, then Proposition 2 says that the belief

q = (q1, . . . , qn) = (π−

1 , . . . , π
−
n ) is reported by a rank-

dependent utility maximizer, which implies that:

W−

(

n−1
∑

x=1

px

)

=

n−1
∑

x=1

qx

...

W− (p1 + p2) = q1 + q2

W− (p1) = q1

Once W− is known, the above system of equations can

be solved by using forward substitution, i.e., by first com-

puting p1, then substituting that into the next equation to

find p2, and so on. Starting with the base case p1, I have

p1 = W−
−1

(q1). For p2, I have p2 = W−
−1

(q1+q2)−p1.

More generally, for all k ∈ {2, . . . , n− 1}, I obtain pk by

solving the equation pk = W−
−1
(

∑k

x=1 qx

)

−
∑k−1

x=1 px.

Finally, pn = 1−
∑n−1

x=1 px.

7.3 Mixed tailored proper scoring rule

Finally, if a mixed, tailored proper scoring rule is used

in the elicitation process, then Proposition 3 says that the

belief q = (q1, . . . , qn) =
(

π−

1 , . . . , π
−

i−1, π
+
i , . . . , π

+
n

)

is

reported under the assumption that W+(ρ)+W−(1−ρ) =
1, for all ρ ∈ [0, 1], which implies that:

W+ (pn) = qn

W+ (pn−1 + pn) = qn−1 + qn

...

W+

(

n
∑

x=i

px

)

=
n
∑

x=i

qx

W−

(

i−1
∑

x=1

px

)

=

i−1
∑

x=1

qx

...

W− (p1 + p2) = q1 + q2

W− (p1) = q1
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Once the weighting functions W+ and W− are known,

the above system of equations can be solved by using for-

ward and backward substitution, i.e., forward substitution

can be used to obtain the values of p1, . . . , pi−1 as dis-

cussed in Section 7.2, whereas backward substitution can

be used to obtain the values of pi, . . . , pn as discussed in

Section 7.1.

8 Conclusion

Proper scoring rules are traditional devices to elicit beliefs

over uncertain outcomes. As discussed in this paper, re-

porting a belief under a proper scoring rule is equivalent

to making a decision under uncertainty. An implicit as-

sumption when eliciting beliefs using proper scoring rules

is that the underlying agents are risk neutral. Such an as-

sumption is hardly compelling when the agents are human

beings. Winkler (1969) suggested how to adapt proper

scoring rules to expected utility theory by tailoring the

proper scoring rule to an agent’s nonlinear utility func-

tion. Currently, there is overwhelming evidence that rank-

dependent models are more accurate when describing and

predicting human beings’ decisions under uncertainty than

expected utility theory. In this paper, I characterized how

an agent who maximizes a rank-dependent utility reports

his belief under a tailored proper scoring rule. In particu-

lar, I found that such an agent misreports his true belief by

reporting a vector of decision weights.

Decision weights can be seen as a cognitive bias con-

cerning how human beings deal with probabilities and,

thus, they should not be taken as a measure of an agent’s

true belief. Hence, my findings highlight the necessity of

knowing all the components that drive an agent’s attitude

towards uncertainty before appropriately using a proper

scoring rule to elicit that agent’s belief.

On the positive side, I showed how to elicit weighting

functions using tailored proper scoring rules, and how to

obtain an agent’s true belief from his misreported belief

once his weighting functions are known. My work thus

provides guidelines for appropriately using proper scor-

ing rules under the empirically plausible assumption that

agents behave so as to maximize rank-dependent utili-

ties. The first step consists of eliciting the agent’s util-

ity function, e.g., by using the tradeoff method proposed

by Wakker and Deneffe (1996). In the second step, the

agent’s utility function is incorporated into a proper scor-

ing rule, and the resulting tailored proper scoring rule

is used to elicit the agent’s belief. In the third step,

the agent’s weighting functions are elicited using tailored

proper scoring rules, as described in Section 6. Finally, the

agent’s true belief is obtained a posteriori from his misre-

ported belief, as described in Section 7. This approach is

rather general in a sense that it works for any strictly in-

creasing utility function, any finite number of outcomes,

and any proper scoring rule as long as the potential scores

given a reported belief are all different from each other.

It is interesting to note that the analysis performed in

this paper can be extended to other non-expected utility

theories. For example, consider the rank-affected mul-

tiplicative weights (RAM) model by Birnbaum (1997,

2008). For two outcomes, θ1 and θ2, and a positive, tai-

lored proper scoring rule S(q, θx), where the outcomes are

ordered such that S(q, θ2) ≥ S(q, θ1), the RAM model is:

2× p
γ
1 × U(S(q, θ1))

2× p
γ
1 + 1× p

γ
2

+
1× p

γ
2 × U(S(q, θ2))

2× p
γ
1 + 1× p

γ
2

(9)

Intuitively, the RAM model means that the value an

agent assigns to a lottery is equal to a weighted average

in which the weight associated with a payoff is a function

of the probability associated with the underlying outcome

and the rank of the payoff relative to other payoffs. Instead

of his true belief p = (p1, p2), an agent who behaves so

as to maximize the above function ends up reporting the

following belief:

q =

(

2× p
γ
1

2× p
γ
1 + 1× p

γ
2

,
1× p

γ
2

2× p
γ
1 + 1× p

γ
2

)

For example, consider the true belief p = (0.2, 0.8)
used in the numerical example in Section 5.1. More-

over, assume the parameter value γ = 0.7 in (9). In

this setting, in order to maximize (9), an agent reports

q = (0.431, 0.569). Note that the reported belief is dif-

ferent than (0.393, 0.607) and (0.257, 0.743), the beliefs

reported under RDU for, respectively, a positive and a neg-

ative tailored proper scoring rules (see Section 5.1).

As can be seen from the above example, different de-

cision theories might imply different reporting behavior

under proper scoring rules. Consequently, the procedure

to obtain an agent’s true belief from his reported belief is

also dependent on the underlying decision theory. These

points raise an important question: which decision the-

ory is the “correct” theory when eliciting beliefs using

proper scoring rules? Identifying the “best theory” nat-

urally requires judgments about the relative importance

of predictive accuracy, simplicity, tractability, theoretical

properties, etc. Such judgments are often subjective in

their nature. For example, one might argue that rank-

dependent models have stronger axiomatic foundations in

terms of preferences than the RAM model. Alternatively,

the RAM model accounts for behavior that many rank-

dependent models violate, such as coalescing and viola-

tions of stochastic dominance (Birnbaum, 2008).

Another example of such a trade-off concerns the Trans-

fer of Attention Exchange (TAX) model by Birnbaum and

Chavez (1997). Birnbaum (2008) documented the supe-

rior predictive performance of the TAX model over some
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rank-dependent models as well as the RAM model. The

TAX model represents the utility of a lottery as a weighted

average of the utilities of payoffs, where the weights de-

pend on both the probabilities of the outcomes and the

ranks of the payoffs. Unlike weights in rank-dependent

models, those weights represent transfers of attention from

branch to branch. In practice, this implies that the utility of

each payoff is weighted by a nonlinear transformation of a

subjective probability as well as “weight transfer” factors.

Such factors make the problem of adapting proper scoring

rules to the general TAX model quite challenging, a task

that I have not been able to accomplish yet.

If one decides that predictive accuracy is the most rele-

vant criterion, then a whole new set of experiments might

be required to determine the most appropriate decision

theory when using proper scoring rules. As discussed

in Section 4.2, the payoffs of lotteries are defined by an

agent’s reported belief when using proper scoring rules.

Consequently, agents have some control over their pay-

offs. In practice, this fact might have some influence on

the way agents choose amongst different lotteries.

References

Abdellaoui, M. (2000). Parameter-free elicitation of util-

ity and probability weighting functions. Management

Science, 46(11), 1497–1512.

Allais, M. (1953). Violations of the betweenness axiom

and nonlinearity in probability. Econometrica, 21, 503-

546.

Arrow, K. J. (1971). Essays in the theory of risk-baring

(Vol. 1). Markham Publishing Company Chicago.

Bacon, D. F., Chen, Y., Kash, I., Parkes, D. C., Rao, M.,

& Sridharan, M. (2012). Predicting your own effort.

In Proceedings of the 11th international conference on

autonomous agents and multiagent systems (pp. 695–

702).

Birnbaum, M. H. (1997). Violations of monotonicity in

judgment and decision making. In A. A. J. Marley (Ed.),

Choice, decision, and measurement: Essays in honor of

R. duncan luce (p. 73-100).

Birnbaum, M. H. (2008). New paradoxes of risky decision

making. Psychological review, 115(2), 463–501.

Birnbaum, M. H., & Chavez, A. (1997). Tests of theories

of decision making: Violations of branch independence

and distribution independence. Organizational Behav-

ior and Human Decision Processes, 71(2), 161–194.

Camerer, C. F. (2004). Prospect theory in the wild : Evi-

dence from the field. In C. F. Camerer, G. Loewenstein,

& M. Rabin (Eds.), Advances in behavioral economics

(pp. 148–161).

Carvalho, A., & Larson, K. (2010). Sharing a reward

based on peer evaluations. In Proceedings of the 9th in-

ternational conference on autonomous agents and mul-

tiagent systems (pp. 1455–1456).

Carvalho, A., & Larson, K. (2011). A truth serum for

sharing rewards. In Proceedings of the 10th interna-

tional conference on autonomous agents and multiagent

systems (pp. 635–642).

Carvalho, A., & Larson, K. (2012). Sharing rewards

among strangers based on peer evaluations. Decision

Analysis, 9(3), 253–273.

Gonzalez, R., & Wu, G. (1999). On the shape of the

probability weighting function. Cognitive psychology,

38(1), 129–166.

Holt, C. A., & Laury, S. K. (2002). Risk aversion and

incentive effects. American Economic Review, 92(5),

1644–1655.

Johnstone, D. J. (2011). Economic interpretation of prob-

abilities estimated by maximum likelihood or score.

Management Science, 57(2), 308–314.

Johnstone, D. J., Jose, V. R. R., & Winkler, R. L. (2011).

Tailored scoring rules for probabilities. Decision Anal-

ysis, 8, 256–268.

Jose, V. R. (2009). A characterization for the spherical

scoring rule. Theory and Decision, 66(3), 263–281.

Kothiyal, A., Spinu, V., & Wakker, P. P. (2011). Comono-

tonic proper scoring rules to measure ambiguity and

subjective beliefs. Journal of Multi-Criteria Decision

Analysis, 17(3-4), 101–113.

Nakazono, Y. (2013). Strategic behavior of federal

open market committee board members: Evidence from

members’ forecasts. Journal of Economic Behavior &

Organization, 93, 62–70.

Offerman, T., Sonnemans, J., Van De Kuilen, G., &

Wakker, P. P. (2009). A truth serum for non-bayesians:

Correcting proper scoring rules for risk attitudes. Re-

view of Economic Studies, 76(4), 1461–1489.

Quiggin, J. (1982). A theory of anticipated utility. Journal

of Economic Behavior & Organization, 3(4), 323–343.

Savage, L. J. (1971). Elicitation of personal probabilities

and expectations. Journal of the American Statistical

Association, 66(336), 783–801.

Schmeidler, D. (1989). Subjective probability and ex-

pected utility without additivity. Econometrica, 57(3),

571–587.

Selten, R. (1998). Axiomatic characterization of the

quadratic scoring rule. Experimental Economics, 1(1),

43–62.

Starmer, C. (2000). Developments in non-expected util-

ity theory: The hunt for a descriptive theory of choice

under risk. Journal of Economic Literature, 332–382.

Tetlock, P. E. (2005). Expert political judgment: How

good is it? how can we know? Princeton University

Press.

Tversky, A., & Kahneman, D. (1992). Advances in

prospect theory: Cumulative representation of uncer-

http://journal.sjdm.org/vol10.1.html


Judgment and Decision Making, Vol. 10, No. 1, January 2015 Tailored Proper Scoring Rules Elicit Decision Weights 96

tainty. Journal of Risk and Uncertainty, 5(4), 297–323.

Wakker, P. P. (2010). Prospect theory: For risk and am-

biguity. Cambridge University Press.

Wakker, P. P., & Deneffe, D. (1996). Eliciting von

neumann-morgenstern utilities when probabilities are

distorted or unknown. Management Science, 42(8),

1131–1150.

Winkler, R. L. (1969). Scoring rules and the evaluation of

probability assessors. Journal of the American Statisti-

cal Association, 64(327), 1073–1078.

Winkler, R. L., & Murphy, A. H. (1968). “good” proba-

bility assessors. Journal of Applied Meteorology, 7(5),

751–758.

Winkler, R. L., & Murphy, A. H. (1970). Nonlinear utility

and the probability score. Journal of Applied Meteorol-

ogy, 9, 143–148.

http://journal.sjdm.org/vol10.1.html

	Introduction
	Related work
	Proper scoring rules
	Tailored proper scoring rules

	Rank-dependent utility
	RDU and lotteries
	RDU and tailored proper scoring rules

	Characterizing reporting behavior under tailored proper scoring rules and RDU
	Numerical example

	Using tailored proper scoring rules to elicit an agent's weighting functions
	Obtaining true beliefs from vectors of decision weights
	Positive tailored proper scoring rule
	Negative tailored proper scoring rule
	Mixed tailored proper scoring rule

	Conclusion
	References

