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Inferring uncertainty from interval estimates: Effects of alpha level
and numeracy

Luke F. Rinne∗ Michèle M. M. Mazzocco†

Abstract

Interval estimates are commonly used to descriptively communicate the degree of uncertainty in numerical values.
Conventionally, low alpha levels (e.g., .05) ensure a high probability of capturing the target value between interval
endpoints. Here, we test whether alpha levels and individual differences in numeracy influence distributional infer-
ences. In the reported experiment, participants received prediction intervals for fictitious towns’ annual rainfall totals
(assuming approximately normal distributions). Then, participants estimated probabilities that future totals would be
captured within varying margins about the mean, indicating the approximate shapes of their inferred probability dis-
tributions. Results showed that low alpha levels (vs. moderate levels; e.g., .25) more frequently led to inferences of
over-dispersed approximately normal distributions or approximately uniform distributions, reducing estimate accuracy.
Highly numerate participants made more accurate estimates overall, but were more prone to inferring approximately
uniform distributions. These findings have important implications for presenting interval estimates to various audiences.
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1 Introduction

When the exact value of a quantity is unknown, its ap-
proximation and corresponding degree of uncertainty can
be conveyed via an interval estimate—a range of possible
values expected to include or "capture" the target value
with a discrete probability or frequency. Researchers of-
ten present interval estimates in conjunction with formal
statistical analyses (e.g., frequentist confidence intervals),
and both academic and lay audiences can use interval es-
timates as descriptive measures of uncertainty in quanti-
tative values. For example, prediction intervals rely on
past observations (e.g., previous annual rainfall totals)
to estimate the probability that some future observation
(e.g., next year’s rainfall total) will fall within a given
range (annual rainfall totals are roughly normally dis-
tributed in non-arid regions; Bardsley, 1984). A decision-
maker (e.g., a farmer) may combine this information with
an implicit or explicit assumption of normality to gain a
sense of the probability distribution of future outcomes.

An important feature of interval estimates is their al-
pha level—the probability or frequency with which the
target value is expected to fall outside the interval. Al-
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pha levels typically equal .10 or .05, respectively reflect-
ing 90% or 95% certainty or reliability (i.e., confidence)
of capturing the target quantity within the interval. This
convention derives from the norms of statistical hypoth-
esis testing established by Fisher (1925). Statistical re-
sults are deemed "significant" if there is a low probability
(p < .05 or p < .10) that similar or more extreme results
would arise at random. Conventional alpha levels of .05
or .10 are commonly used for interval estimates related to
everything from political polls (Hillygus, 2011) to blood
test results (Armitage, Berry, & Matthews, 2002) and are
pervasive in academic publishing.

What is the basis for choosing a particular alpha level?
Are .05 or .10 alpha levels appropriate in all contexts, or
should different alpha values be used, particularly when
interval estimates serve a descriptive purpose? What al-
pha level is appropriate for interval estimates used in
everyday life, outside the context of scientific research?
What alpha level is best for the rainfall prediction inter-
val presented to the aforementioned farmer? Questions
like these pose a challenge, because the range of rele-
vant values and the degree of certainty required may dif-
fer across situations (e.g., what crop the farmer raises, its
drought tolerance, etc.). In addition, individuals may dif-
fer in how they interpret interval estimates. Ideally, prob-
abilistic inferences drawn from interval estimates should
be relatively accurate and consistent across individuals
and contexts. In many situations, it is impractical to
present highly detailed information about probability dis-
tributions (e.g., quintiles, graphs, etc.), so, if possible,
interval estimates should accurately convey not just the
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probability that an outcome will fall outside a given pair
of endpoints but also the approximate overall shape of the
probability distribution. To our knowledge, no research
has investigated how interval estimate alpha levels affect
the accuracy of distributional inferences. In this paper, we
address this question by examining how the alpha levels
of prediction intervals influence capture probability esti-
mates for varying ranges. We also evaluate the effects of
numerical and mathematical ability, or numeracy, on the
accuracy of capture probability estimates and the approx-
imate shapes of inferred probability distributions.

In the reported experiment, participants received infor-
mation about prediction intervals for future annual rain-
fall totals in each of several fictitious cities. These predic-
tion intervals differed in alpha level but consistently im-
plied normal distributions with the same amount of vari-
ability (i.e., the standard deviation of the implied distribu-
tion was held constant to control for the actual amount of
uncertainty present). Participants then estimated proba-
bilities that next year’s rainfall total would be captured
within three different ranges about the mean. Collec-
tively, these estimates provided a cross-sectional view
of the probability distribution inferred from each predic-
tion interval, allowing us to reconstruct the approximate
shapes of these inferred distributions. Our aim was to
evaluate whether alpha levels affect the accuracy of dis-
tributional inferences, as well as whether accuracy or any
observed effects on accuracy vary with numeracy skills.

1.1 Prior research on subjective interval es-
timates

There is an existing literature on the formulation of sub-
jective interval estimates—interval estimates people cre-
ate for unknown values based on their degree of certainty
in their own judgment (e.g., Juslin, Wennerholm, & Ols-
son, 1999; Juslin, Winman, & Hansson, 2007; Klayman,
Soll, Gonzalez-Vallejo, & Barlas, 1999; Soll & Klayman,
2004; Winman, Hansson, & Juslin, 2004). Unlike the
present study, participants in studies of subjective interval
estimation provide their own estimates of quantities (e.g.,
prices, dates, distances, etc.) and determine their own
interval endpoints and/or confidence levels. Researchers
then analyze whether these subjective interval estimates
capture actual values as often as would be implied by av-
erage confidence levels. The alignment of subjective con-
fidence with actual capture probabilities is often termed
the "calibration" of judgment. A common finding in cal-
ibration research is that subjective interval estimates tend
to capture the true value at a rate well below individuals’
average confidence levels—that is, participants are often
overconfident (e.g., Soll & Klayman, 2004).

Of potential relevance to the present study is research
by Teigen and Jorgensen (2005) on how people’s confi-

dence levels in subjective interval estimates relate to in-
terval widths. Teigen and Jorgensen asked participants
to create intervals that would capture an unknown quan-
tity’s value (e.g., the population of Spain) with a given
confidence level (e.g., 90%). However, those same partic-
ipants subsequently estimated that the intervals they cre-
ated would actually capture the target value at a much
lower rate (e.g., 50%), indicating a form of overconfi-
dence in the original interval estimate. Although this
result could be taken to suggest that people believe in-
terval estimates generally capture target values at a rate
lower than that indicated by the assigned level of con-
fidence, subjective interval estimation is quite different
from cases in which complete interval estimates are pre-
sented as objective sources of information about the ap-
proximate value of a quantity. The findings of Teigen
and Jorgensen do not mean that people think interval esti-
mates they receive as information are poorly calibrated—
or that people will necessarily infer distributions that are
different from the one implied by that information. If we
consider the example of annual rainfall totals, Teigen and
Jorgensen’s work is relevant to the question of how peo-
ple would use their own prior knowledge (e.g., of weather
patterns) to relate capture probability to a range of possi-
ble rainfall totals. This is an issue of the calibration of
subjective judgment. In contrast, the present study inves-
tigates how people use information about the likelihood
of the rainfall total falling within a given range to infer a
probability distribution and assess the chances of the to-
tal falling within different ranges. This is an issue not of
calibration, but of the proper interpretation of quantitative
information.

1.2 Heuristic inferences of uncertainty
from prediction intervals

The notion of "bounded rationality" (e.g., Simon, 1957) is
consistent with the idea that people likely utilize descrip-
tive prediction intervals in a relatively intuitive, heuristic
manner of the sort described by Tversky and Kahneman
(1974). For example, imagine that the farmer receives a
rainfall prediction interval with an alpha level of .05, in-
dicating a 95% probability that next year’s total will fall
within 12 inches of the annual average. What may matter
most to the farmer is not the probability that the total will
fall within 12 inches of the mean, but rather the probabil-
ity that the total will fall within 6 inches of the mean, as
values outside this narrower range will damage the crop.
To determine this latter probability, the farmer may (ei-
ther explicitly or implicitly) compare the sizes of the two
ranges (±6 in. vs. ±12 in.) and intuitively adjust the con-
fidence level accordingly. Whether or not this would lead
to accurate inferences of uncertainty is unclear. On the
one hand, Griffiths and Tenenbaum (2006) showed that
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Figure 1: Examples of a uniform distribution (platykurtic) and a non-standardized t-distribution (leptokurtic).
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individuals possess accurate implicit probabilistic mod-
els of everyday phenomena and can use these models ef-
fectively to make intuitive predictions about future out-
comes. On the other hand, heuristic reasoning sometimes
leads to non-normative interpretations of descriptive sta-
tistical information (e.g., boxplots; Lem, Onghena, Ver-
schaffel, & Van Dooren, in press).

Even if an individual recognizes (implicitly or explic-
itly) that annual rainfall totals tend to be normally dis-
tributed, the alpha level that serves as the starting point
for adjustment could potentially affect the shape of the in-
ferred distribution. Low-alpha prediction intervals (e.g.,
α = .05) exclude only very rare outcomes; interval end-
points lie in the distribution’s tails, far from the mean. In
the tails, the slope of the normal curve approaches zero,
so incremental movements of interval endpoints affect
capture probability only slightly. Narrowing the interval
the farmer receives (a ±12 inch range about the mean)
by two inches per side (a 17% reduction in width) only
reduces capture probability from 95% to 90%, which
may be counterintuitive. Individuals’ experiences with
stochastic phenomena naturally tend to involve relatively
common outcomes near the center of the distribution
(e.g., rainfall totals close to the mean), where the size of
the relevant range about the mean has a much steeper ef-
fect on capture probability. Thus, receiving wide, low-
alpha interval estimates may lead to downward over-
adjustments of capture probability for narrower ranges,
consistent with the inference of an "over-dispersed" nor-
mal probability distribution (i.e., a larger standard devia-
tion than is implied by the interval estimate).

Low alpha levels could also lead to capture probabil-
ity estimates that are consistent with a non-normal dis-
tribution. This could result from a misconception about
the relevant probabilistic model, or from systematic in-
accuracies in estimation, despite some sense that the dis-
tribution is normal. If estimated capture probability de-
creases with interval width too quickly, a platykurtic, or

"boxy" distribution may provide a better fit to estimates
than a normal distribution, a possibility we consider in the
present study. The uniform distribution (Figure 1a) repre-
sents the extreme case—one in which there is no central
tendency, as capture probability decreases linearly with
interval width. Capture probabilities that decrease with
interval width faster than a linear function would result
in a bimodal probability distribution, a possibility we do
not consider, as it seems highly implausible that an indi-
vidual would infer a bimodal distribution from an interval
estimate (nor would it be sensible to present an interval
estimate for a bimodal distribution).

Our primary hypothesis is that presenting interval es-
timates with low alpha levels may lead to capture prob-
ability estimates that are fit best by over-dispersed nor-
mal distributions or non-normal platykurtic distributions.
However, in some cases, participants may infer an under-
dispersed normal distribution or a non-normal leptokur-
tic distribution (i.e., a distribution that is "pointy" com-
pared to the normal distribution). In this case, partici-
pants’ capture probability estimates may fit better with a
non-standardized t-distribution1 (Figure 1b) than a nor-
mal distribution. Although we did not hypothesize that
specific alpha levels or participant characteristics would
lead to inferences of leptokurtic distributions, we consid-
ered this potential shape in the interest of completeness
and for exploratory purposes.

Ultimately, the use of certain alpha levels may lead
more consistently to capture probability estimates that fit

1Although the typical Student’s t-distribution is also leptokurtic, it is
related to the normal distribution such that this kurtosis is due to fatter
tails and not a higher, narrower peak. (This is what makes it useful for
modeling small samples drawn from a normal distribution; i.e., t-tests
for means.) The non-standardized t-distribution is appropriate here be-
cause it can vary in scale to model distributions that are leptokurtic but
have higher peaks and smaller tail probabilities than the normal distri-
bution. The non-standardized t-distribution is equivalent to the Pearson
Type VII distribution, a family of distributions with symmetric density
and arbitrary leptokurtosis.
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well with the appropriate normal distribution. Such a re-
sult would point toward alpha levels that may be prefer-
able when descriptive interval estimates will be used
to draw intuitive distributional inferences. Although it
might be possible in such cases to explicitly inform in-
dividuals that the relevant distribution is normal in form,
this will be impractical unless the recipient of the inter-
val estimate has at least a basic knowledge of probabil-
ity theory. For the general population (e.g., patients in
health care settings, consumers of weather information,
etc.), such knowledge is probably not the norm. In ad-
dition, it is interesting from a theoretical perspective to
consider the inferences people draw based on their in-
tuitive probabilistic models of the phenomenon in ques-
tion. Thus, we chose not to provide the participants in our
study with any explicit information about the relevant dis-
tributional form, but chose a domain (annual rainfall to-
tals) for which a normal distribution is relatively intuitive.

Of secondary interest in this study was our hypothe-
sis that people with low numeracy may exhibit poorer
capture probability estimates and may be more prone to
inferring incorrect distribution shapes in response to in-
terval estimates. We base this hypothesis on evidence
that numeracy varies widely, even among educated adults
(Lipkus, Samsa, & Rimer, 2001), with individual differ-
ences influencing intuitive numerical judgments and ev-
eryday decisions, even when explicit calculation is not
required (Reyna, Nelson, Han, & Dieckmann, 2009). For
example, people with lower numeracy are more suscepti-
ble to framing effects due to numerical format (e.g., fre-
quency vs. probability; Peters et al., 2006). Moreover, a
central aspect of numeracy involves the precision of peo-
ple’s mental representations of numerical magnitude (De-
haene, 2011). Those with more precise numerical rep-
resentations not only tend to exhibit greater mathemat-
ical ability (Halberda, Mazzocco, & Feigenson, 2008),
but are also more strongly influenced by relevant propor-
tional differences during decision-making (Peters, Slovic,
Västfjäll, & Mertz, 2008). Therefore, we suspect that in-
dividual differences in numeracy may affect people’s use
of interval estimates to draw inferences about probabil-
ity distributions. In the experiment described below, we
evaluated numeracy via a brief test of numerical skills
and also asked participants whether they had taken any
formal statistics classes.

The research undertaken in this study is novel and im-
portant for several reasons: First, to our knowledge, no
one has investigated whether the alpha levels of inter-
val estimates presented as information affect the proba-
bility distributions people intuitively infer. The answer
to this question has practical applications in terms of
the presentation of interval estimates to various audi-
ences, and it may also have implications for theoretical
questions regarding the accuracy of implicit probabilistic

models. Second, the methodology we have developed—
specifically, our method of reconstructing inferred prob-
ability distributions from a series of capture probability
estimates—could potentially be applied in a wide vari-
ety of research settings to assess beliefs about probability
distributions. Finally, our study extends the existing liter-
ature on numeracy by considering how numeracy affects
the interpretation of interval estimates, a form of quantita-
tive information that has not yet received much attention
in this regard.

2 Method

2.1 Participants and procedure
A total of 200 students in psychology courses at a large,
top-tier public university were recruited (Mage = 20.2;
75 males). Students earned course credit for completing
a series of paper-and-pencil experiments; the present ex-
periment was the first in the series. Before beginning,
participants were told they would be making quick, intu-
itive probability estimates in less than 15-20 seconds (this
instruction effectively discouraged attempts to calculate
answers).

Participants completed four trials. During each trial,
participants received the mean annual rainfall total (in
inches) for a fictitious town, along with a prediction in-
terval for future totals. The alpha level of the prediction
interval differed across trials (.05, .10, .25, and .40), but
corresponding interval widths were set such that all pre-
diction intervals implied approximately the same normal
distribution (SD ≈ 6; hereafter referred to as the "im-
plied" distribution).

After receiving information about a given prediction
interval, participants were asked to judge the probabili-
ties that next year’s rainfall total will fall within ±3, ±6,
and ±9 inches of the mean. These ranges were chosen to
reflect a cross-section of the probability distribution, al-
lowing us to obtain data on the participant’s impression of
the distribution’s overall shape. Thus, participants gave
capture probability estimates for the three different range
sizes in response to prediction intervals with each of the
four alpha levels, for a total of 12 estimates. Regardless
of the alpha level, the assumption of a normal distribu-
tion implies capture probabilities of approximately .38,
.68, and .86 for the ±3, ±6, and ±9 inch ranges, respec-
tively.

After completing all four trials, participants performed
additional tasks not relevant to this study, with the excep-
tion of one survey item about statistics coursework and
a ten-item timed (ten-minute) math test. Finally, partic-
ipants were debriefed on the purpose of the experiment
and provided with the normative responses to estimation
and test items.
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2.2 Materials
2.2.1 Capture probability estimation assessment

For each of the four trials, participants were given one
sheet of paper (see supplemental materials). At the top,
a prediction interval was presented in a short paragraph,
such as the following (bolding/underlining included):

Historical data indicates that the average annual
rainfall total in Grand Prairie is 30 inches, and
there is a 95% chance that any given year’s to-
tal will be within 12 inches of this average (i.e.,
a 95% chance that the total will be between 18
inches and 42 inches).

Participants read this paragraph silently. Below, three
separate prompts asked participants to estimate the prob-
abilities that next year’s annual total will fall within dif-
ferent margins of the annual average (±3, ±6, or ±9 in.).
The following is a sample prompt:

What do you think is the probability that next
year’s rainfall total will be within 3 inches of
the average (i.e., between 27 inches and 33
inches)?

%

Participants estimated capture probabilities in either
ascending or descending order with respect to range size
(i.e., ±3, ±6, then ±9 in. or ±9, ±6, then ±3 in.).
This order was randomly assigned for each participant
and held constant across trials to minimize confusion.
The presentation order of prediction intervals with dif-
ferent alpha levels (.05, .10, .25, or .40) was counter-
balanced based on a 4 × 4 Latin square. Four different
counterbalanced orderings of town names (Grand Prairie,
Townsville, Cedar Hills, or Brook Hollow) and rainfall
means (25, 30, 35, or 40 in.) were created and randomly
assigned to participants. Although no explicit informa-
tion about the probability distribution of rainfall totals
was presented, the fact that the means were exactly at the
center of the interval estimates is suggestive of a symmet-
ric, unimodal distribution.

2.2.2 Survey and math assessment

A survey item included in this study asked participants
to report (yes/no) whether they ever had taken a statis-
tics course (level not specified). The math test was de-
signed to measure variability in general numeracy skills
among college students. There were ten items on assorted
topics (e.g., place value, counting, probability, percent
change, or average/median; see supplemental materials).
These items were presented in a fixed order across partic-
ipants, roughly in order of increasing difficulty. Math test
scores reflect the number of correct responses (out of 10)
achieved within the 10-minute time limit.

3 Results
Six participants (3 male; 3% of the total sample) were
excluded because of incomplete or incoherent responses.
Responses were considered incoherent if the judged cap-
ture probability for a smaller range (e.g., ±3 in.) equaled
or exceeded that for a larger range (e.g., ±6 in.). Such
responses suggest a misunderstanding of either the task
or the concept of probability. The remaining 194 partic-
ipants were included in all subsequent analyses, which
we present below in three sections. First, to investigate
how capture probability estimates were affected by ex-
perimental manipulations and covariates, we conducted
an ANCOVA and related post-hoc analyses. Next, we an-
alyzed the approximate shapes of the probability distri-
butions participants inferred, using regression analyses to
fit different distribution forms (normal, t-distribution, and
uniform) to participants’ capture probability estimates. In
the third section of results, we present several analyses
that focus specifically on effects of numeracy.

3.1 Error in capture probability estimates
The raw error in participants’ estimates of capture proba-
bility (estimated − actual) differed depending on both
of the main experimental factors—alpha level and range
size—and was also influenced by individual differences
in numeracy. We conducted a repeated-measures AN-
COVA with two within-subjects factors: a) the alpha level
(Alpha: .05, .10, .25, .40), and b) the range for which
capture probability was estimated (Range: ±3, ±6, or
±9 in. about the mean). Between-subjects factors in-
cluded the presentation orders of different alpha levels,
range conditions, town names, and mean rainfall totals.
Prior statistics coursework was a binary factor, and the
centered math score (# correct − mean) was a covari-
ate.

3.1.1 Order effects

There were no significant effects of presentation order
for alpha levels (p = .149), town names (p = .673),
or rainfall means, (p = .638). The order in which es-
timates were made for different range sizes (ascending
vs. descending) had a small but statistically significant
effect on error (Mascend = −.001, Mdescend = −.015),
F (1, 179) = 5.453, p = .021, η2p = .030.

3.1.2 Alpha level and range

Mauchly’s test of sphericity indicated that variances dif-
fered across levels of Alpha, W (5) = .333, p < .001,
Range, W (2) = .354, p < .001, and the Alpha × Range
interaction, W (20) = .461, p < .001. Therefore, the
Greenhouse-Geisser correction was applied for all results
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Figure 2: Mean error in capture probability estimates, by alpha level of prediction interval presented and size of the
range for which capture probability was estimated. Error bars indicate the standard error of the mean within each
condition (un-pooled variances).
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involving within-subjects factors. There were significant
main effects of Alpha, F (1.823, 326.290) = 16.414,
p < .001, η2p = .084, and Range, F (1.215, 217.506) =
23.876, p < .001, η2p = .118. The Alpha × Range inter-
action was also significant, F (4.770, 853.752) = 5.537,
p < .001, η2p = .030.

Overall, capture probability estimates were relatively
accurate for moderate alpha levels (.40 or .25), but were
relativley inaccurate for low alpha levels (.10 and .05; see
Figure 2). Low alpha levels led participants to signif-
icantly underestimate capture probabilities, particularly
for the ±6 and ±9 inch ranges.

As seen in Figure 2, accuracy was not necessarily im-
proved when the endpoints of the prediction interval pre-
sented were close to the endpoints of the range for which
capture probability was estimated. A prediction interval
with an alpha level of .10 covers ±10 inches about the
mean, but for the ±9 inch range, estimates were actu-
ally better when prediction intervals covered ±5 inches
(α = .40) or ±7 inches (α = .25) about the mean. In
addition, for the ±3 inch range, estimate error only dif-
fered significantly from zero when participants received
the prediction interval with the closest set of endpoints
(±5 inches, α = .40).

Note that for low alpha levels, underestimation in-
creases with the move from the ±3 inch range to the ±6
inch range, but then declines with the move from the ±6
inch range to the ±9 inch range. A post-hoc trend analy-
sis confirmed the presence of a significant quadratic com-
ponent in the main effect of Range, F (1, 179) = 84.886,

p < .001, η2p = .322. This trend suggests a tendency to
infer over-dispersed distributions—either normal distri-
butions with larger-than-appropriate standard devations,
or platykurtic ("boxy") distributional forms. Such distri-
butions have lower probability density at the peak com-
pared to the implied normal distribution. Thus, negative
error in capture probability estimates rises as the range
initially increases from zero, but this increase continues
only until the two distributions intersect. Flatter or box-
ier distributions have larger tail probabilities, so once the
inferred and implied distributions cross, the error shrinks
back to zero, leading to the observed quadratic relation-
ship. The results found here suggest that for low alpha
levels, the x-values where the implied and typical in-
ferred distributions intersect—at which point the differ-
ence in capture probability for a given range reaches its
maximum—may lie relatively close to ±6 inches about
the mean rainfall total.

3.1.3 Statistics coursework and math test scores

Error in capture probability estimates was not related to
self-reported statistics coursework (p = .327). Math
score (Mean = 6.40, Median = 6, SD = 2.24) had a
significant effect on estimate accuracy, but in the opposite
direction of predictions—higher math scores were asso-
ciated with more error in the negative direction, not less,
F (1, 179) = 7.096, p = .008, η2p = .038. There was also
a significant quadratic trend in the negative effect of math
scores on error, F (1, 179) = 6.021, p = .015, η2p = .033.
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Additional analyses related to the effect of math score on
error will be presented in Section 3.3, which focuses on
numeracy effects.

3.1.4 Interactions of within-subjects and between
subjects variables

There was a significant interaction between range size
and the order of estimation prompts (ascending vs. de-
scending range size), F (1.215, 217.506) = 6.512, p =
.008, η2p = .035. Participants who estimated capture
probabilities for ranges of descending size (±9, ±6, then
±3 inch range) exhibited positive error for the ±3 inch
range (Mdescend = .021 vs. Mascend = −.023), rather
than the typical negative error observed in other condi-
tions.

The centered math score interacted significantly with
both Alpha, F (1.823, 326.290) = 5.583, p = .005,
η2p = .030, and Range, F (1.215, 217.506) = 13.010,
p < .001, η2p = .068. The main effect of Alpha on
capture probability estimate error (increased negative er-
ror for low alpha levels vs. moderate alpha levels) was
roughly twice as large for participants with the highest
math scores (8-10; Mlow-α = −.078 vs. Mmod-α =
.008) compared to other participants (0-7; Mlow-α =
−.035 vs. Mmod-α = .0002). Meanwhile, there was
a significant negative correlation between math scores
and estimation error for the ±3 inch range, r = −.156,
p = .030, an almost significant positive correlation for
the ±9 inch range, r = .132, p = .067, and no significant
correlation for the ±6 inch range, r = −.096, p = .186.
Further analyses relevant to observed interactions involv-
ing math scores will be presented later in the section on
numeracy effects.

3.2 Regression models of inferred distribu-
tional shapes

Although the ANCOVA results presented in the previous
section show that error in capture probability estimates
varies with alpha level and numeracy, this does not reveal
what distributional shapes fit best with participants’ cap-
ture probability estimates within each alpha level. There-
fore, we conducted a series of regression analyses to
investigate how alpha levels influence the distributional
shapes participants inferred from the interval estimates
they received. In general, these regression analyses show
that the type of distribution that best fit participants’ esti-
mates is strongly dependent on the alpha level of the pre-
diction interval presented, but there is also considerable
variation between individuals.

For each set of three capture probability estimates (±3,
±6, or ±9 inches about the mean) that a given partic-
ipant made in response to a prediction interval with a

given alpha level (.40, .25, .10, or .05), we constructed
three different regression models. Each model assessed
the fit of a different distributional form: a normal distri-
bution, a non-standardized t-distribution (leptokurtic), or
a uniform distribution (platykurtic). We fit normal and
t-distributions using nonlinear regression. We used lin-
ear regression to fit uniform distributions, as this distri-
butional form implies that capture probability decreases
linearly with the width of the interval.

For the regression analyses, it was assumed that the
means of all inferred distributions were zero, which
makes the upper bound of the interval for which capture
probability was estimated—denoted here by x—equal
to 3, 6, or 9 inches, depending on the range condition.
The regression equations used to model participants’ es-
timates in terms of each distribution type are defined here
in terms of the cumulative distribution function (CDF),
FX(x) = P (X ≤ x), for a random variable X with
the specified probability distribution2. Because the in-
tervals for which capture probability was estimated are
symmetric about the mean (excluding equivalent lower-
tail and upper-tail regions), capture probability estimates
were modeled as follows:

P (capture) = FX(x)− [1− FX(x)]

= 2FX(x)− 1
(1)

Assuming that distributions are centered (M = 0), both
the normal and uniform probability distributions (and
their CDFs) are defined by a single parameter. For the
normal distribution, this parameter is the standard devi-
ation. We define uniform distributions based on their
"width", the difference between the highest and lowest
outcome values with non-zero probability (alternatively,
the uniform distribution can be defined by its "height",
the probability density for any possible outcome). In
contrast, the centered t-distribution is defined using two
parameters—a scaling parameter that controls the spread,
and a second parameter that corresponds to the number of
degrees of freedom (df ) when the t-distribution is used to
model a sample of values drawn from a normal popula-
tion. However, for our purposes, the df parameter simply
controls how heavy the tails of the distribution are.

We assessed the fit of each set of three capture prob-
ability estimates with each of the different distribution
types by examining adjusted-R2 values for the three re-
gression models:

Adj R2 = 1−
(
SSerror

SStotal

)(
dferror
dftotal

)
(2)

The model with the highest adjusted-R2 value was
considered the "best-fitting" distribution. Adjusted-R2

2For CDFs of the normal, uniform, and t-distributions, see Jackman
(2009).
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Table 2: Mixed-effects multinomial logistic regression model of best-fitting distribution type.

Outcome Predictor OR SE z p

T-dist. Fits Best
(vs. Normal)

Math Score 0.827 0.058 −2.69 0.007

α = .25 0.693 0.187 −1.36 0.175

α = .10 0.657 0.194 −1.42 0.155

α = .05 1.123 0.342 0.38 0.704

Uniform Fits Best
(vs. Normal)

Math Score 1.071 0.063 1.17 0.244

α = .25 1.732 0.524 1.81 0.070

α = .10 5.568 1.719 5.56 < 0.001

α = .05 9.070 2.940 6.80 < 0.001

Table 1: Counts of best-fitting distribution types, by alpha
level of the interval estimate presented and the type of
distribution that best fit capture probability estimates.

Distribution Type

α Normal T-dist. Uniform Total

.40 79 83 32 194

.25 78 68 48 194

.10 54 55 85 194

.05 38 62 94 194

Total 249 268 259 776

takes into account the number of explanatory terms in
the model, which is important, because the centered t-
distribution was fit using two free parameters, while there
is only one free parameter for centered normal and cen-
tered uniform distributions. A t-distribution should only
be seen as providing the best fit with participants’ re-
sponses if the corresponding regression model increases
the R2 value more than would be expected by chance
with the introduction of a second explanatory term.

Table 1 shows counts of the different distribution types
that best fit participants’ capture probability estimates for
each alpha level. Because regression models were fit to
only three data points, results should be interpreted with
some caution. R2 values were generally high (> .90) for
all three distribution-type models, and in many cases, in-
creases in explanatory power associated with one model
over another were small. Thus, classifications of partici-
pants’ responses according to distribution shape are likely
somewhat "noisy" and may be relatively arbitrary in bor-
derline cases. However, when viewed in aggregate, the
results provide a good deal of information about the ef-
fect of alpha level on the approximate shapes of the dis-

tributions that participants inferred.
As seen in Table 1, participants’ estimates were fit best

by a normal distribution considerably more often when
alpha levels were moderate (.40 or .25) rather than low
(.10 or .05). Low alpha levels increased the frequency
with which estimates were fit best by a uniform distribu-
tion, reducing the frequencies of best-fitting normal and
t-distributions. The results described in Table 1 were cor-
roborated by a mixed-effects multinomial logistic regres-
sion analysis. A model was constructed to predict how
the best-fitting distribution for each set of estimates varies
according to the alpha level and participant. Fixed ef-
fects included dummy variables for alpha levels, as well
as each participant’s centered math score. Random in-
tercepts accounted for additional within-subject regulari-
ties in best-fitting distribution shape. The base outcome
was that a normal distribution provided the best fit. The
.40 alpha level was the reference group for effects of al-
pha level. Table 2 gives the parameter estimates for the
model in terms of odds ratios (OR), which measure the
extent to which each predictor increases the odds that a
t-distribution or uniform distribution, respectively, fits es-
timates better than a normal distribution.

The alpha level was not significantly associated with
the odds of inferring a t-distribution (leptokurtic) rather
than a normal distribution. However, successively lower
alpha levels dramatically increased the odds that esti-
mates were fit best by a uniform distribution (platykur-
tic). Also, higher math scores significantly decreased the
odds that a t-distribution provided a better fit than a nor-
mal distribution, but there was no analogous effect for
the uniform distribution. This indicates that higher math
scores were associated with higher best-fit frequencies
for both normal and uniform distributions compared to
t-distributions.

In addition to considering what types of distributions
provided the best fit to participants’ capture probability
estimates, it is also important to consider the parame-

http://journal.sjdm.org/vol8.3.html


Judgment and Decision Making, Vol. 8, No. 3, May 2013 Inferring uncertainty from interval estimates 338

Figure 3: Average probability distributions (distributions with average parameter values), by best fitting distribution
type (frequency = n) and alpha level.
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Table 3: Average parameter values of best-fitting distribu-
tions, by alpha level of the prediction interval presented
and type of distribution that best fit estimates.

Best-Fitting Distribution Type

Normal T-dist. Uniform

α St. Dev. df Scale Width

.40 5.89 2.50 3.60 18.88

.25 6.17 2.10 3.47 19.80

.10 6.55 1.86 2.69 22.22

.05 7.76 1.27 2.65 24.40

ter values of these best-fitting distributions. A partici-
pant could potentially draw the proper inference of a nor-
mal distribution, but yet be so far off with respect to the
standard deviation that associated capture probability es-
timates are quite poor—perhaps poorer, even, than es-
timates derived from a non-normal inferred distribution
with the right parameter value(s). To determine the typ-
ical values of distribution parameters, we calculated the
average parameter values of participants’ best-fitting dis-

tributions within each distribution classification (Table 3).

As Table 3 shows, the values of each parameter ap-
pear to be related to the alpha level of the prediction
interval presented. To verify, we conducted post-hoc
tests for monotonic trend in the parameter values of best-
fitting distributions as alpha levels decreased. For best-
fitting normal distributions, there was a positive mono-
tonic trend in the standard deviation, z = 8.24, p < .001.
For best fitting t-distributions, there was a marginally sig-
nificant negative trend in the df parameter, z = −1.67,
p = .094, and a significant negative trend in the scale
parameter, z = −4.39, p < .001. There was also a sig-
nificant positive trend in the width of best-fitting uniform
distributions, z = 11.85, p < .001. It is important to
keep in mind, however, that these are not trends within
individuals, as the type of distribution that best fit a given
participant’s estimates often changed with the alpha level.

Figure 3 shows graphs of probability distributions with
the average parameter values from Table 3, along with the
number of participants in each condition whose estimates
were fit best by that distribution type. Although "wisdom
of the crowd" effects (e.g., Galton, 1907) may be at play
here, visual inspection of the figure suggests that best-
fitting normal distributions were very close to the implied
normal distribution (though the similarity declines a bit
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Table 4: Mean error in capture probability percent estimates, by best-fitting distribution type, alpha level, and range
size (±3, ±6, or ±9 in.).

α = .40 α = .25

Best Fit ±3 ±6 ±9 ±3 ±6 ±9

Normal −0.07 0.32 1.50 −1.09 −0.02 −0.59

T-dist. 7.07 −2.63 −8.91 12.05 1.50 −3.22

Uniform −6.83 −1.34 5.90 −11.74 −4.15 4.21

α = .10 α = .05

Best Fit ±3 ±6 ±9 ±3 ±6 ±9

Normal −3.18 −2.58 −3.16 −5.95 −9.51 −10.19

T-dist. 18.70 4.84 −1.63 19.61 5.05 −2.23

Uniform −13.25 −14.88 −3.16 −15.48 −20.40 −9.97

for lower alpha levels, particularly the .05 level). This
result suggests that inferring the proper (normal) distri-
butional form may be an important factor in making ac-
curate capture probability estimates.

Table 4 gives the mean estimation error associated with
best-fitting distribution shapes, broken down by both al-
pha level and range size. Several trends are apparent.
First, at alpha levels other than .05, estimates that were
fit best by a normal distribution are quite accurate. Also,
as would be expected given the shapes of the uniform dis-
tribution (platykurtic) and t-distribution (leptokurtic), the
direction of error in estimates best fit by these distribu-
tions appears to be related to the range for which capture
probability was estimated. The best-fitting t-distributions
tended to have high peaks and a strong central tendency,
reflecting overestimation of capture probability, particu-
larly for narrower ranges. The reverse is true for partici-
pants whose estimates were fit best by a uniform distribu-
tion. Probability density is relatively low and even across
the entire distribution, reflecting increasing underestima-
tion of capture probability as the range narrowed.

It also appears in Table 4 that the strength of the trends
described above increases for lower alpha values (.05 and
.10). Again, however, bear in mind that the type of dis-
tribution that tended to fit best was also dependent on the
alpha level, so the means in Table 4 should not be taken
to indicate the overall effects of alpha level. Nonetheless,
it is interesting to note that, as suggested by Figure 3, low
alpha levels decreased the accuracy of capture probabil-
ity estimates that were fit best by a normal distribution. In
addition, estimates that were fit best by non-normal dis-
tributions (uniform or t-distributions) were also poorer in

low-alpha conditions than in high-alpha conditions.
The apparent trends just described are indeed statis-

tically significant. We conducted a mixed-effects lin-
ear regression to model error in capture probability esti-
mates, which, for each participant, were averaged across
the three range conditions for each alpha level. As be-
fore, potential within-subject regularities were modeled
via random intercepts, and the math score was a fixed
predictor. For this analysis, we condensed the four al-
pha levels into two groups: low alpha levels (.05 and .10)
and moderate alpha levels (.25 and .40). This makes in-
terpretation simpler, as we also modeled the interaction
of alpha level and best-fitting distribution type to verify
whether trends associated with each distribution type in-
deed become stronger with lower alpha levels. The more
detailed model (with three alpha level predictors and six
interaction terms) shows essentially the same results as
the model presented in Table 5.

The Low Alpha × Uniform Fits Best interaction does
have a significant effect on the average estimation error,
indicating that low alpha levels exacerbate the tendency
for estimates best fit by uniform distributions to be too
low for smaller ranges. This effect can be seen in Fig-
ure 3 in the graph for the two lowest alpha levels (.05
and .10), as the "heights" of the average best-fitting uni-
form distributions are lower compared to those for mod-
erate alpha levels (.25 and .40). Meanwhile, the sig-
nificant Low Alpha × T-dist. Fits Best interaction indi-
cates that the reverse tendency for estimates best fit by
t-distributions to be too high is also stronger when alpha
levels are low. This is reflected in Figure 3 by the fact
that the t-distributions were "pointier" (more leptokurtic)
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Table 5: Mixed-effects linear regression model of error in capture probability estimates.

Predictor B SE z p

Math Score 0.026 0.115 0.230 0.882

Low Alpha −5.279 0.748 −7.060 < 0.001

T-dist. Fits Best 0.144 0.671 0.210 0.830

Uniform Fits Best −2.225 0.804 −2.770 0.006

Low Alpha × T-dist. Fits Best 11.940 1.036 11.530 < 0.001

Low Apha × Uniform Fits Best −5.409 1.086 −4.980 < 0.001

Constant 0.148 0.483 0.310 0.760

when prediction interval alpha levels equaled .05 or .10.
Thus, we can see that low alpha levels not only increase
the likelihood of inferring a non-normal probability dis-
tribution, but also make the non-normality of these in-
ferred distributions more extreme.

Overall, the regression analyses we conducted support
the earlier finding that capture probability estimates were
most accurate when alpha levels were moderate (.25 or
.40). Additionally, the results show that the accuracy of
capture probability estimates was associated with the in-
ference of an approximately normal distribution shape.
Thus, it appears that moderate alpha levels improved cap-
ture probability estimates not only by supporting the in-
ference of the correct distributional form, but also by im-
proving the accuracy of estimates regardless of which dis-
tributional form fit participants’ estimates best. Finally, it
is interesting to note that the math score is no longer sig-
nificant in the regression model of estimation error shown
in Table 5. This suggests that the relationship between
math scores and estimation error seen earlier in the AN-
COVA (greater negative error with higher scores) arises
largely due to the effect of numeracy on the form of the
inferred distribution, rather than effects on parameter val-
ues. We now explore results related to numeracy in more
detail.

3.3 Effects of numeracy

A closer analysis of the role of numeracy shows that
higher math scores had both positive and negative effects
on the accuracy of capture probability estimates. The
ANCOVA described earlier primarily showed the nega-
tive effect. An initial indication as to the origin of this
effect comes from the regression model presented in Ta-
ble 2: Higher math scores were related to decreasing
chances of a t-distribution fitting estimates better than a
normal distribution, but did not affect the chances of a

uniform distribution fitting better than a normal distribu-
tion. Thus, while higher math scores do appear to in-
crease the likelihood of inferring an approximately nor-
mal distribution shape (rather than a t-distribution), they
also increase the chance of inferring an approximately
uniform distribution shape. The negative effect of numer-
acy arises because estimates were least accurate when ap-
proximately uniform distributions were inferred, particu-
larly when alpha levels were low (see Table 4).

To further explore the effects of numeracy and con-
sider the role of prediction interval alpha levels, we clas-
sified participants’ math test scores into three groups. The
"middle" group (5-7) included scores within one of the
median (6), while the "high" and "low" groups included
scores above 7 and below 5, respectively. Then, for each
alpha level, we constructed a contingency table relating
math score group to the distribution type that best fit esti-
mates of capture probability. Table 6 includes the relative
proportions and counts of participants within each math
score group who made estimates that were most consis-
tent with each different form. Also provided are chi-
squared tests of association between math score group
and best-fitting distribution shape. Math score group
was significantly related to best-fitting distributional form
for alpha levels of .40 and .10, and the relationship was
marginally significant for the .05 alpha level. For the .25
alpha level, the relationship appears to be similar to that
for the .40 alpha level, but was weaker and did not reach
significance.

These contingency tables collectively show the com-
bination of two separate trends—the tendencies for both
high math scores and low alpha levels to lead to the in-
ference of approximately uniform distributions (reflected
by large negative estimation errors). As seen in the lower
right portion of Table 6, the capture probability estimates
of participants in the highest math score group were fit
best by a uniform distribution most of the time when al-
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Table 6: Proportions (counts) of best-fitting distribution type, by math score group and alpha level, with group sizes
(n) and chi-squared tests of association.

α = .40 α = .25 α = .10 α = .05

Math Group N T U N T U N T U N T U

Low (0-4) 35% 54% 11% 38% 35% 27% 19% 32% 49% 24% 41% 35%
(n = 37) (13) (20) (4) (14) (13) (10) (7) (12) (18) (9) (15) (13)

Middle (5-7) 39% 49% 12% 36% 43% 21% 30% 37% 33% 13% 36% 51%
(n = 90) (35) (44) (11) (32) (39) (19) (27) (33) (30) (12) (32) (46)

High (6-10) 46% 28% 25% 48% 24% 28% 30% 15% 55% 25% 22% 52%
(n = 67) (31) (19) (17) (32) (16) (19) (20) (10) (37) (17) (15) (35)

χ2(4) = 10.93 χ2(4) = 6.55 χ2(4) = 12.42 χ2(4) = 8.19

p = 0.027 p = 0.161 p = 0.015 p = 0.085

Note: N = normal distribution, T = t-distribution, U = uniform distribution.

pha equaled .10 or .05, as were the estimates of the mid-
dle group when alpha equaled .05. Because inferring an
approximately uniform distribution is associated with un-
derestimation of capture probabilities in most conditions,
individuals with higher math scores tended to exhibit
larger negative estimation errors, which explains the re-
lationship between math scores and negative error in the
initial ANCOVA. The increased likelihood of inferring an
approximately uniform distribution shape also explains
the significant interactions of math score with alpha level
and range size in the ANCOVA—higher math scores pro-
duce more inferences of approximately uniform distribu-
tion shapes, which have stronger negative effects on esti-
mation error for lower alpha levels and narrower ranges.
In the discussion below, we suggest a possible explana-
tion for why those with higher math scores were more
likely to infer approximately uniform distributions, re-
ducing the accuracy of these participants’ estimates.

Contrary to the negative effects of math score on error,
note in the lower left portion of Table 6 that when alpha
levels were moderate (.25 or .40), participants with the
highest math scores inferred approximately normal dis-
tribution shapes nearly half the time, considerably more
often than did participants in lower math score groups.
Across all four alpha levels, participants with the high-
est math scores made estimates consistent with a normal
distribution at a rate greater than or equal to that of par-
ticipants in lower math score groups. This suggests that
higher math scores should be linked to more accuracy,
since those who inferred approximately normal distribu-
tions tended to make the most accurate estimates (see Ta-

ble 4).
The positive effects of higher numeracy become

clearer when we examine the absolute value of the er-
ror in capture probability estimates—the mean unsigned
error, rather than the signed error. We did not use this
measure for other analyses, as doing so would obscure or
muddle relationships involving factors that could affect
the direction of the error (e.g., alpha levels, inferred dis-
tribution shapes, etc.). However, for analyses of the raw
accuracy of estimates across experimental factors (which
are all orthogonal to math scores), the unsigned error
is informative. The correlation between the mean un-
signed error and math scores is significant and negative,
r = −.164, p = .023, indicating that those with greater
numeracy did tend to make more accurate estimates after
all. The explanation for the seemingly contradictory neg-
ative relationship between math scores and the signed er-
ror in the earlier ANCOVA (as well as the quadratic trend)
is quite simple: Participants with higher math scores ex-
hibited smaller errors, but these errors were much more
likely than not to occur in the negative direction, as higher
math scores increase the odds of inferring an approx-
imately uniform distribution. Meanwhile, participants
with lower math scores tended to make larger errors, but
their errors were less consistent in terms of direction (re-
sulting in a mean closer to zero). The propensity for in-
dividuals with higher math scores to infer approximately
uniform distributions undercuts the benefits of numeracy
somewhat, but overall, more numerate participants still
made more accurate capture probability estimates in re-
sponse to prediction intervals.
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4 Discussion

The results of our experiment support the central hypoth-
esis that distributional inferences from prediction inter-
vals with low alpha levels (.10 and .05) are less accu-
rate than inferences from prediction intervals with mod-
erate alpha levels (.40 and .25). Low alpha levels pro-
duced more inferences of approximately uniform distri-
butions (reflected in underestimation of capture probabil-
ities), leading participants to view the quantity in question
(the annual rainfall total) as more uncertain than it actu-
ally was. Even when participants inferred an approxi-
mately normal distribution, these distributions were over-
dispersed when alpha levels were low, particularly for the
lowest alpha level of .05. However, when alpha levels
were moderate, participants were more adept at inferring
an appropriate distribution shape, even though they did
not receive any explicit information about the shape of
the distribution. This is consistent with previous find-
ings of accurate distributional inferences in everyday con-
texts (e.g., Griffiths & Tenenbaum, 2006) and lends fur-
ther support to the idea that intuitive probabilistic models
of common phenomena such as rainfall totals are quite
good, at least under the right conditions (e.g., Gigeren-
zer, Todd, & the ABC Research Group, 2000).

Our study shows the importance of receiving informa-
tion about uncertainty under the right conditions. Though
further study is needed to establish generalizability, we
suspect that the effects found here for prediction inter-
vals are likely to hold for interval estimates in general, in
which case the broad use of low alpha levels for nearly
all interval estimates may quite often have deleterious ef-
fects on everyday probabilistic judgments and decisions.
Assuming average numeracy, the .05 alpha level in our
study led participants to underestimate by 10 points (58%
vs. 68%) the probability of the annual rainfall total falling
within ±6 inches about the mean. If similar information
were presented to the farmer described at the outset, it
seems quite plausible that such a misconception could
negatively influence a decision to, say, purchase irriga-
tion equipment. Similar scenarios are possible in health
care, finance, and many other decision-making contexts
where incorrect inferences from interval estimates could
lead to suboptimal decisions. It is interesting to note that
moderate alpha levels of .20 or higher are more common
in some disciplines than others, with demographic fore-
casting (e.g., Saether & Engen, 2002) and cognitive as-
sessment (e.g., Sattler, 2001; Wechsler, 1999) being two
positive examples. Our results suggest that people who
present interval estimates to the general population (e.g.,
doctors, financial advisors, pollsters, etc.) should perhaps
follow suit by more often employing moderate alpha lev-
els to descriptively communicate uncertainty in numeri-

cal values (making the alpha level clear, of course). Mod-
erate alpha levels may also sometimes be useful in the
social sciences for presentations of research results. For
example, once statistical significance (p < .05) is estab-
lished via a hypothesis test, confidence intervals with al-
pha levels above .10 may do a better job of giving the
audience an intuitive sense of a sample’s distribution.

Another interesting, albeit unanticipated finding was
that the order in which capture probability estimates were
made (ascending vs. descending range size) affected the
accuracy of those estimates. Estimates made for succes-
sively larger ranges were more accurate than those made
for successively smaller ranges, and there was an inter-
action between this order and the size of the range, with
descending order actually producing positive error for the
±3 inch range, rather than the negative error typical in
most conditions. This is suggestive of an asymmetric
anchoring and adjustment effect. Participants likely ad-
justed their initial estimates downward for narrower in-
tervals in the descending condition and upward for wider
intervals in the ascending condition. Previous research
shows that the starting point often constrains adjustments
of this sort, as people tend to adjust only to the first plau-
sible estimate they reach (Epley & Gilovich, 2006). It
could be that the range of plausible values is larger for
narrower intervals than it is for wider intervals—wide in-
tervals approach the extremes of the distribution, so they
may tend to compel high capture probability estimates
more strongly than narrower intervals compel lower es-
timates. If so, this would explain why estimates for the
±3 inch range would be anchored upward when estimates
are made in descending order, while estimates for the ±9
inch interval would not be anchored downward when es-
timates were made in ascending order. Thus, when mul-
tiple capture probability estimates are made, prior esti-
mates may influence subsequent ones, but estimating in
ascending order may help minimize anchoring effects.
Future research involving the methods used here should
take this possibility into consideration.

Results related to numeracy were mixed. A dichoto-
mous indicator of statistics coursework did not predict the
accuracy of capture probability estimates, yet scores on a
math test did. People with higher math scores tended to
make more accurate capture probability estimates (mea-
sured by the unsigned error), suggesting that those who
are more numerate may utilize prediction interval infor-
mation more effectively. This idea gains further support
from the finding that participants with higher numeracy
more frequently inferred approximately normal distribu-
tions, something that might occur for a number of rea-
sons. People with higher math scores may be better able
to intuitively generate the correct distributional form from
a prediction interval (at least if the alpha level is moder-
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ate), or alternatively, they may simply be better at making
estimates that fit a desired pattern. More numerate people
may also be more likely to explicitly know what the nor-
mal distribution looks like (perhaps regardless of whether
they have taken statistics courses). Any of these possi-
bilities could potentially lead to more accurate capture
probability estimates among the more numerate. Future
research should try to tease apart these possibilities.

The positive effects of numeracy were undermined
somewhat by the tendency for those with higher math
scores to more often infer approximately uniform distri-
butions, particularly when alpha levels were low. Why
might both low alpha levels and high math scores lead
participants to make estimates most consistent with a uni-
form distribution shape? Estimating that capture proba-
bility decreases linearly with interval size may be a rel-
atively natural response when people find it difficult to
use the interval estimate information they have received.
Consistent with our hypothesis, interval estimates with
low alpha levels may be particularly difficult to inter-
pret and use, because they focus on extreme outcomes
for which intuitions about probability are poor. Fur-
ther, extrapolating a linear relationship between range
size and capture probability is a highly "mathematical"
approach to fall back on when intuitions about the mean-
ing of the information presented are weak. This may ex-
plain why inferences of approximately uniform distribu-
tions were more common among those with higher math
scores, particularly when alpha levels were low. Unfor-
tunately, this strategy leads to very poor capture proba-
bility estimates—so poor, in fact, that these individuals
would probably be better off relying solely on their intu-
itions, however weak they may be. Thus, we see that nu-
meracy can sometimes have dueling effects—higher nu-
meracy may improve quantitative intuitions, but may also
lead to the pursuit of highly "mathematical" strategies in
situations when they do not apply.

Several limitations of the present study should be
noted. First, participants may have falsely interpreted
the fact that they received different prediction intervals as
an indication that their inferences of uncertainty should
differ across alpha levels. However, the counterbalanc-
ing of alpha level orderings controlled for such effects.
Second, the dichotomous variable accounting for statis-
tics coursework was crude; a finer-grained measure may
reveal a relationship between statistical training and in-
ferences of uncertainty that was not detected here. Third,
although there was considerable variability in the popula-
tion tested, this population was not representative of a full
range of numeracy skills. Others have found numeracy
effects among college student populations (e.g., Peters et
al., 2006) and educated adults (Lipkus et al., 2001), but

future work should attempt to replicate the results found
here with a sample drawn from the general population.

More research is needed not only to investigate the
generalizability of our results, but also to better under-
stand how numerical skills and statistical training affect
inferences about probability distributions more broadly.
Future research could explore the question of whether
inferences of non-normal distribution shapes result from
misconceptions about the correct probabilistic model, as
opposed to biases in judgment that occur despite knowl-
edge of the correct distributional form. More work is also
needed to understand what leads people to sometimes in-
fer leptokurtic distribution shapes. Finally, it would be
interesting to study the effects of explicit prior knowledge
of distributional forms, as well as the effect of being told
the correct distributional form ahead of time.

We believe that the methodology we have developed to
study inferred probability distributions is potentially ap-
plicable in many research settings. It is quite simple to
have participants generate capture probability estimates
across multiple intervals. Future research might employ
a larger number of such estimates in order to acquire a
finer-grained picture of participants’ inferred probability
distributions. This method could also be used in other ar-
eas of study (e.g., calibration of judgment) to investigate
the shapes of wholly subjective probability distributions.

Overall, our study supports three important conclu-
sions: First, the recipients of interval estimates can use
this information not only to learn the probability of the
target value falling within a certain range, but also to in-
fer the shape of the relevant normal probability distribu-
tion. Second, the commonly used .05 and .10 alpha lev-
els, when applied to interval estimates that are interpreted
descriptively, may lead to inferences of over-dispersed
normal or non-normal, platykurtic (e.g., uniform) distri-
butional shapes. In many contexts, an alpha level of .25
may represent a better conventional choice, as our results
showed that prediction intervals with this alpha level led
to the most accurate distributional inferences. Third, indi-
vidual differences in numeracy will likely affect how peo-
ple infer probability distributions from interval estimates.
Higher numeracy may sometimes contribute to subopti-
mal inferences from interval estimates, but overall, our
results show that persons with high numeracy tend to in-
fer more accurate probability distributions than persons
with low numeracy. The use of a .25 alpha level may help
mitigate these differences, however. Ultimately, we hope
that knowledge of the effects of alpha level and numeracy
will lead to more effective presentations of interval esti-
mates to diverse populations in a variety of judgment and
decision-making contexts.

http://journal.sjdm.org/vol8.3.html
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